首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4971篇
  免费   395篇
  国内免费   7篇
  5373篇
  2023年   18篇
  2022年   35篇
  2021年   82篇
  2020年   51篇
  2019年   68篇
  2018年   78篇
  2017年   87篇
  2016年   146篇
  2015年   226篇
  2014年   264篇
  2013年   315篇
  2012年   362篇
  2011年   354篇
  2010年   227篇
  2009年   250篇
  2008年   328篇
  2007年   296篇
  2006年   327篇
  2005年   294篇
  2004年   302篇
  2003年   279篇
  2002年   252篇
  2001年   60篇
  2000年   35篇
  1999年   62篇
  1998年   54篇
  1997年   34篇
  1996年   29篇
  1995年   32篇
  1994年   39篇
  1993年   34篇
  1992年   37篇
  1991年   27篇
  1990年   23篇
  1989年   22篇
  1988年   13篇
  1987年   11篇
  1986年   16篇
  1985年   17篇
  1984年   23篇
  1983年   13篇
  1982年   14篇
  1981年   14篇
  1980年   18篇
  1979年   12篇
  1978年   9篇
  1977年   14篇
  1976年   10篇
  1975年   9篇
  1974年   7篇
排序方式: 共有5373条查询结果,搜索用时 15 毫秒
31.
Salix cheilophila Schneid. is a naturally occurring Salix species in Mu Us Sandy Land, Inner Mongolia, China. We focused on the morphological adaptability of S. cheilophila to sand dune burial. For morphological measurements, 32 S. cheilophila seedlings were removed from a community which was in the process of being buried by a shifting sand dune. Each seedling collected included the entire root system. We measured the number, length, and biomass of the adventitious roots, primary lateral roots, and taproot, and compared the morphological characteristics of the root system, including adventitious roots, for seedlings buried to various levels in the sand. The growth range of adventitious roots increased as the length of the buried portion of the main shoot increased. In addition, the total dry weight of all current-year shoots tended to increase gradually with increasing total dry weight of the adventitious roots. These results suggest that S. cheilophila tends to make use of the sedimentary sand layer that accompanies shifting sand dunes. However, there was no correlation between biomass or number of adventitious roots and the length of the buried part of the main shoot. Thus, S. cheilophila does not grow adventitious roots proportional to the buried part. These morphological characteristics of the root system, including the adventitious roots, may indicate that S. cheilophila has poor morphological adaptability to sand dune burial.  相似文献   
32.
A novel series of annulated tricyclic compounds was synthesized and evaluated as NMDA/NR2B antagonists. Structure–activity development was directed towards in vitro optimization of NR2B activity and selectivity over the hERG K+ channel. Preferred compounds were subsequently evaluated for selectivity in an α1-adrenergic receptor binding counter-screen and a cell-based assay of NR2B activity.  相似文献   
33.
Cyclic AMP regulates multiple neuronal functions, including neurite outgrowth and axonal regeneration. GPR3, GPR6, and GPR12 make up a family of constitutively active G protein-coupled receptors (GPCRs) that share greater than 50% identity and 65% similarity at the amino acid level. They are highly expressed in the central nervous system, and their expression in various cell lines results in constitutive stimulation of cAMP production. When the constitutively active GPCRs were overexpressed in rat cerebellar granule neurons in culture, the transfected neurons exhibited significantly enhanced neurite outgrowth and overcame growth inhibition caused by myelin-associated glycoprotein. GPR12-mediated neurite outgrowth was the most prominent and was shown to depend on G(s) and cAMP-dependent protein kinase. Moreover, the GPR12-mediated rescue from myelin-associated glycoprotein inhibition was attributable to cAMP-dependent protein kinase-mediated inhibition of the small GTPase, RhoA. Among the three receptors, GPR3 was revealed to be enriched in the developing rat cerebellar granule neurons. When the endogenous GPR3 was knocked down, significant reduction of neurite growth was observed, which was reversed by expression of either GPR3 or GPR12. Taken together, our results indicate that expression of the constitutively active GPCRs up-regulates cAMP production in neurons, stimulates neurite outgrowth, and counteracts myelin inhibition. Further characterization of the GPCRs in developing and injured mammalian neurons should provide insights into how basal cAMP levels are regulated in neurons and could establish a firm scientific foundation for applying receptor biology to treatment of various neurological disorders.  相似文献   
34.

Background  

DING proteins constitute a conserved and broadly distributed set of proteins found in bacteria, fungi, plants and animals (including humans). Characterization of DING proteins from animal and plant tissues indicated ligand-binding ability suggesting a role for DING proteins in cell signaling and biomineralization. Surprisingly, the genes encoding DING proteins in eukaryotes have not been identified in the eukaryotic genome or EST databases. Recent discovery of a DING homologue (named Psp here) in the genome of Pseudomonas fluorescens SBW25 provided a unique opportunity to investigate the physiological roles of DING proteins. P. fluorescens SBW25 is a model bacterium that can efficiently colonize plant surfaces and enhance plant health. In this report we genetically characterize Psp with a focus on conditions under which psp is expressed and the protein exported.  相似文献   
35.
The aim of this study was to investigate the efficacy, receptor specificity, and site of action of Delta9-tetrahydrocannabinol (THC) as an antiemetic in the ferret. THC (0.05-1 mg/kg ip) dose-dependently inhibited the emetic actions of cisplatin. The ED50 for retching was approximately 0.1 mg/kg and for vomiting was 0.05 mg/kg. A specific cannabinoid (CB)1 receptor antagonist SR-141716A (5 mg/kg ip) reversed the effect of THC, whereas the CB2 receptor antagonist SR-144528 (5 mg/kg ip) was ineffective. THC applied to the surface of the brain stem was sufficient to inhibit emesis induced by intragastric hypertonic saline. The site of action of THC in the brain stem was further assessed using Fos immunohistochemistry. Fos expression induced by cisplatin in the dorsal motor nucleus of the vagus (DMNX) and the medial subnucleus of the nucleus of the solitary tract (NTS), but not other subnuclei of the NTS, was significantly reduced by THC rostral to obex. At the level of the obex, THC reduced Fos expression in the area postrema and the dorsal subnucleus of the NTS. The highest density of CB1 receptor immunoreactivity was found in the DMNX and the medial subnucleus of the NTS. Lower densities were observed in the area postrema and dorsal subnucleus of the NTS. Caudal to obex, there was moderate density of staining in the commissural subnucleus of the NTS. These results show that THC selectively acts at CB1 receptors to reduce neuronal activation in response to emetic stimuli in specific regions of the dorsal vagal complex.  相似文献   
36.
In experimental animals, bradykinin type-1 receptors (BK-1Rs) are induced during inflammation and ischemia, and, by exerting either cardioprotective or cardiotoxic effects, they may contribute to the pathogenesis of heart failure. Nothing is known about the expression of BK-1Rs in human heart failure. Human heart tissue was obtained from excised hearts of patients undergoing cardiac transplantation (n = 13), due to idiopathic dilated cardiomyopathy (IDC; n = 7) or to coronary heart disease (CHD; n = 6), and from normal hearts (n = 6). The expression of BK-1Rs was analyzed by means of competitive RT-PCR, Western blot analysis, and immunohistochemistry. Expression of BK-1R mRNA was increased in both IDC (2.8-fold) and CHD (2.1-fold) hearts compared with normal hearts. The observed changes were verified at the protein level. Expression of BK-1Rs in failing hearts localized to the endothelium of intramyocardial coronary vessels and correlated with an increased expression of TNF-alpha in the vessel wall. Treatment of human coronary artery endothelial cells with TNF-alpha increases their BK-1R expression. These novel results show that BK-1Rs are induced in the endothelium of intramyocardial coronary vessels in failing human hearts and so may participate in the pathogenesis of heart failure.  相似文献   
37.
Amputation of the distal region of the terminal phalanx of mice causes an initial wound healing response followed by blastema formation and the regeneration of the digit tip. Thus far, most regeneration studies have focused in embryonic or neonatal models and few studies have examined adult digit regeneration. Here we report on studies that include morphological, immunohistological, and volumetric analyses of adult digit regeneration stages. The regenerated digit is grossly similar to the original, but is not a perfect replacement. Re-differentiation of the digit tip occurs by intramembranous ossification forming a trabecular bone network that replaces the amputated cortical bone. The digit blastema is comprised of proliferating cells that express vimentin, a general mesenchymal marker, and by comparison to mature tissues, contains fewer endothelial cells indicative of reduced vascularity. The majority of blastemal cells expressing the stem cell marker SCA-1, also co-express the endothelial marker CD31, suggesting the presence of endothelial progenitor cells. Epidermal closure during wound healing is very slow and is characterized by a failure of the wound epidermis to close across amputated bone. Instead, the wound healing phase is associated with an osteoclast response that degrades the stump bone allowing the wound epidermis to undercut the distal bone resulting in a novel re-amputation response. Thus, the regeneration process initiates from a level that is proximal to the original plane of amputation.  相似文献   
38.
39.
40.
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号