全文获取类型
收费全文 | 6214篇 |
免费 | 506篇 |
国内免费 | 10篇 |
专业分类
6730篇 |
出版年
2023年 | 21篇 |
2022年 | 38篇 |
2021年 | 91篇 |
2020年 | 57篇 |
2019年 | 77篇 |
2018年 | 93篇 |
2017年 | 92篇 |
2016年 | 156篇 |
2015年 | 240篇 |
2014年 | 290篇 |
2013年 | 353篇 |
2012年 | 408篇 |
2011年 | 421篇 |
2010年 | 256篇 |
2009年 | 279篇 |
2008年 | 367篇 |
2007年 | 347篇 |
2006年 | 369篇 |
2005年 | 343篇 |
2004年 | 366篇 |
2003年 | 338篇 |
2002年 | 301篇 |
2001年 | 115篇 |
2000年 | 84篇 |
1999年 | 100篇 |
1998年 | 76篇 |
1997年 | 45篇 |
1996年 | 41篇 |
1995年 | 42篇 |
1994年 | 48篇 |
1993年 | 47篇 |
1992年 | 70篇 |
1991年 | 48篇 |
1990年 | 45篇 |
1989年 | 50篇 |
1988年 | 31篇 |
1987年 | 42篇 |
1986年 | 44篇 |
1985年 | 54篇 |
1984年 | 41篇 |
1983年 | 42篇 |
1982年 | 36篇 |
1981年 | 34篇 |
1980年 | 40篇 |
1979年 | 35篇 |
1978年 | 29篇 |
1977年 | 44篇 |
1976年 | 30篇 |
1975年 | 20篇 |
1974年 | 15篇 |
排序方式: 共有6730条查询结果,搜索用时 19 毫秒
61.
Saitoh Y Mizuno H Xiao L Hyoudou S Kokubo K Miwa N 《Molecular and cellular biochemistry》2012,366(1-2):191-200
Reactive oxygen species has been suggested to be one of the key factors associated with the development of obesity. During spontaneous differentiation of mouse stromal preadipocytes OP9 into adipocytes, intracellular superoxide anion radicals (O (2) (-.) ) level markedly increases and is accompanied by a significant elevation of intracellular lipid accumulation. This differentiation-dependent increase in intracellular O (2) (-.) level positively correlated with the intracellular augmentation of the lipid level. Super-highly hydroxylated fullerene (SHH-F; C(60)(OH)(44)), a novel polyhydroxylated fullerene derivative, quenched intracellular O (2) (-.) , and lipid accumulation to 38.7 and 42.7 % of that in the control, respectively. By thin-layer chromatographic analysis of extracted cellular lipid components, SHH-F clearly decreased the triglycerides ratio in the whole lipid droplet fraction, but scarcely influenced other lipids components. PPARγ2 expression, which plays a key role in regulating adipogenic differentiation, was significantly suppressed by SHH-F at the late stage of differentiation, with unaltered PPARγ1 expression. The intracellular superoxide anion radical augmentation preceded expression of PPARγ2, strongly suggesting that the primary O (2) (-.) generation was closely associated with lipid accumulation and subsequent PPARγ2 induction. These results indicate that SHH-F suppresses intracellular lipid accumulation, particularly in lipid droplets, and decreases O (2) (-.) level and subsequent PPARγ2 upregulation during spontaneous differentiation of OP9 preadipocytes into adipocytes. 相似文献
62.
Ohi K Hashimoto R Yasuda Y Nemoto K Ohnishi T Fukumoto M Yamamori H Umeda-Yano S Okada T Iwase M Kazui H Takeda M 《PloS one》2012,7(1):e29780
Background
The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.Methods
Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.Results
Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.Conclusions
Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia. 相似文献63.
Yoshihara K Ikenouchi J Izumi Y Akashi M Tsukita S Furuse M 《Experimental cell research》2011,(4):413-422
Mammalian ortholog of Scribble tumor suppressor has been reported to regulate cadherin-mediated epithelial cell adhesion by stabilizing the coupling of E-cadherin with catenins, but the molecular mechanism involved remains unknown. In this study, we investigated the relationship between the localization of mouse Scribble at cadherin-based adherens junctions (AJs) and its phosphorylation state. Immunofluorescence staining confirmed that Scribble was localized at AJs as well as at the basolateral plasma membrane in epithelial cells. We found that Scribble was detected as two bands by Western blotting analysis and that the band shift to the higher molecular weight was dependent on its phosphorylation at Ser 1601. Triton X-100 treatment extracted Scribble localized on the basolateral membrane but not Scribble localized at AJs in cultured epithelial cells, and the Triton X-100-resistant Scribble was the Ser 1601-unphosphorylated form. Conversely, an in-house-generated antibody that predominantly recognized Ser 1601-phosphorylated Scribble only detected Scribble protein on the lateral plasma membrane. Furthermore, Ser 1601-unphosphorylated Scribble was selectively coprecipitated with E-cadherin–catenin complexes in E-cadherin-expressing mouse L fibroblasts. Taken together, these results suggest that the phosphorylation state of Scribble regulates its complex formation with the E-cadherin–catenin system and may control cadherin-mediated cell–cell adhesion. 相似文献
64.
Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination 总被引:6,自引:0,他引:6
Koyama S Ishii KJ Kumar H Tanimoto T Coban C Uematsu S Kawai T Akira S 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(7):4711-4720
The innate immune system recognizes influenza A virus via TLR 7 or retinoic acid-inducible gene I in a cell-type specific manner in vitro, however, physiological function(s) of the MyD88- or interferon-beta promoter stimulator 1 (IPS-1)-dependent signaling pathways in antiviral responses in vivo remain unclear. In this study, we show that although either MyD88- or IPS-1-signaling pathway was sufficient to control initial antiviral responses to intranasal influenza A virus infection, mice lacking both pathways failed to show antiviral responses, resulting in increased viral load in the lung. By contrast, induction of B cells or CD4 T cells specific to the dominant hemagglutinin or nuclear protein Ags respectively, was strictly dependent on MyD88 signaling, but not IPS-1 signaling, whereas induction of nuclear protein Ag-specific CD8 T cells was not impaired in the absence of either MyD88 or IPS-1. Moreover, vaccination of TLR7- and MyD88-deficient mice with inactivated virus failed to confer protection against a lethal live virus challenge. These results strongly suggest that either the MyD88 or IPS-1 signaling pathway is sufficient for initial antiviral responses, whereas the protective adaptive immune responses to influenza A virus are governed by the TLR7-MyD88 pathway. 相似文献
65.
Dispersal failure contributes to plant losses in NW Europe 总被引:1,自引:0,他引:1
Wim A. Ozinga Christine Römermann Renée M. Bekker reas Prinzing Wil L. M. Tamis Joop H. J. Schaminée Stephan M. Hennekens Ken Thompson Peter Poschlod Michael Kleyer Jan P. Bakker Jan M. van Groenendael 《Ecology letters》2009,12(1):66-74
The ongoing decline of many plant species in Northwest Europe indicates that traditional conservation measures to improve the habitat quality, although useful, are not enough to halt diversity losses. Using recent databases, we show for the first time that differences between species in adaptations to various dispersal vectors, in combination with changes in the availability of these vectors, contribute significantly to explaining losses in plant diversity in Northwest Europe in the 20th century. Species with water- or fur-assisted dispersal are over-represented among declining species, while others (wind- or bird-assisted dispersal) are under-represented. Our analysis indicates that the 'colonization deficit' due to a degraded dispersal infrastructure is no less important in explaining plant diversity losses than the more commonly accepted effect of eutrophication and associated niche-based processes. Our findings call for measures that aim to restore the dispersal infrastructure across entire regions and that go beyond current conservation practices. 相似文献
66.
Implications of Amino Acid Substitutions in GyrA at Position 83 in Terms of Oxolinic Acid Resistance in Field Isolates of Burkholderia glumae, a Causal Agent of Bacterial Seedling Rot and Grain Rot of Rice 总被引:1,自引:0,他引:1 下载免费PDF全文
Yukiko Maeda Akinori Kiba Kouhei Ohnishi Yasufumi Hikichi 《Applied microbiology》2004,70(9):5613-5620
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 μg/ml), moderately resistant isolates (MRs; 50 μg/ml), and highly resistant isolates (HRs; ≥100 μg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates. 相似文献
67.
Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. 总被引:1,自引:0,他引:1
M Liakat Ali Jeff H Taylor Liu Jie Genlou Sun Manilal William Ken J Kasha Lana M Reid K Peter Pauls 《Génome》2005,48(3):521-533
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars. 相似文献
68.
Bani Mukhopadhyay Jie Liu Douglas Osei-Hyiaman Grzegorz Godlewski Partha Mukhopadhyay Lei Wang Won-Il Jeong Bin Gao Gregg Duester Ken Mackie Soichi Kojima George Kunos 《The Journal of biological chemistry》2010,285(25):19002-19011
Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB1 cannabinoid receptors (CB1R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB1R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB1R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227–235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB1R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB1R mRNA and protein, the most efficacious being the RARγ agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB1R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARγ to the CB1R gene 5′ upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB1R expression was attenuated by small interfering RNA knockdown of RARγ in hepatocytes. We conclude that RARγ regulates CB1R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids. 相似文献
69.
Miyake K Tsukui T Shinji Y Shinoki K Hiratsuka T Nishigaki H Futagami S Wada K Gudis K Iwakiri K Yamada N Sakamoto C 《Helicobacter》2004,9(2):130-137
Background. The role of teprenone in Helicobacter pylori‐associated gastritis has yet to be determined. To investigate the effect of teprenone on inflammatory cell infiltration, and on H. pylori colonization of the gastric mucosa in H. pylori‐infected patients, we first compared the effect of teprenone with that of both histamine H2 receptor antagonists (H2‐RA) and sucralfate on the histological scores of H. pylori gastritis. We then examined its in vitro effect on H. pylori‐induced interleukin (IL)‐8 production in MKN28 gastric epithelial cells. Materials and Methods. A total of 68 patients were divided into three groups, each group undergoing a 3‐month treatment with either teprenone (150 mg/day), H2‐RA (nizatidine, 300 mg/day), or sucralfate (3 g/day). All subjects underwent endoscopic examination of the stomach before and after treatment. IL‐8 production in MKN28 gastric epithelial cells was measured by enzyme‐linked immunosorbent assay (ELISA). Results. Following treatment, the teprenone group showed a significant decrease in both neutrophil infiltration and H. pylori density of the corpus (before vs. after: 2.49 ± 0.22 vs. 2.15 ± 0.23, p = .009; 2.36 ± 0.25 vs. 2.00 ± 0.24, p = .035, respectively), with no significant differences seen in either the sucralfate or H2‐RA groups. Teprenone inhibited H. pylori‐enhanced IL‐8 production in MKN28 gastric epithelial cells in vitro, in a dose‐dependent manner. Conclusions. Teprenone may modify corpus H. pylori‐associated gastritis through its effect on neutrophil infiltration and H. pylori density, in part by its inhibition of IL‐8 production in the gastric mucosa. 相似文献
70.
Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse
Watanabe Y Kokubo H Miyagawa-Tomita S Endo M Igarashi K Aisaki Ki Kanno J Saga Y 《Development (Cambridge, England)》2006,133(9):1625-1634
Notch signaling is implicated in many developmental processes. In our current study, we have employed a transgenic strategy to investigate the role of Notch signaling during cardiac development in the mouse. Cre recombinase-mediated Notch1 (NICD1) activation in the mesodermal cell lineage leads to abnormal heart morphogenesis, which is characterized by deformities of the ventricles and atrioventricular (AV) canal. The major defects observed include impaired ventricular myocardial differentiation, the ectopic appearance of cell masses in the AV cushion, the right-shifted interventricular septum (IVS) and impaired myocardium of the AV canal. However, the fates of the endocardium and myocardium were not disrupted in NICD1-activated hearts. One of the Notch target genes, Hesr1, was found to be strongly induced in both the ventricle and the AV canal of NICD1-activated hearts. However, a knockout of the Hesr1 gene from NICD-activated hearts rescues only the abnormality of the AV myocardium. We searched for additional possible targets of NICD1 activation by GeneChip analysis and found that Wnt2, Bmp6, jagged 1 and Tnni2 are strongly upregulated in NICD1-activated hearts, and that the activation of these genes was also observed in the absence of Hesr1. Our present study thus indicates that the Notch1 signaling pathway plays a suppressive role both in AV myocardial differentiation and the maturation of the ventricular myocardium. 相似文献