首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
21.
Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer''s disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer''s disease patients'' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.  相似文献   
22.
Adipose tissue macrophages (ATMs) accumulate in fat during obesity and resemble foam cells in atherosclerotic lesions, suggesting that common mechanisms underlie both inflammatory conditions. CX(3)CR1 and its ligand fractalkine/CX(3)CL1 contribute to macrophage recruitment and inflammation in atherosclerosis, but their role in obesity-induced adipose tissue inflammation is unknown. Therefore, we tested the hypothesis that CX(3)CR1 regulates ATM trafficking to epididymal fat and contributes to the development of adipose tissue inflammation during diet-induced obesity. Cx(3)cl1 and Cx(3)cr1 expression was induced specifically in epididymal fat from mice fed a high-fat diet (HFD). CX(3)CR1 was detected on multiple myeloid cells within epididymal fat from obese mice. To test the requirement of CX(3)CR1 for ATM trafficking and obesity-induced inflammation, Cx(3)cr1(+/GFP) and Cx(3)cr1(GFP/GFP) mice were fed a HFD. Ly-6c(Low) monocytes were reduced in lean Cx(3)cr1(GFP/GFP) mice; however, HFD-induced monocytosis was comparable between strains. Total ATM content, the ratio of type 1 (CD11c(+)) to type 2 (CD206(+)) ATMs, expression of inflammatory markers, and T-cell content were similar in epididymal fat from obese Cx(3)cr1(+/GFP) and Cx(3)cr1(GFP/GFP) mice. Cx(3)cr1 deficiency did not prevent the development of obesity-induced insulin resistance or hepatic steatosis. In summary, our data indicate that CX(3)CR1 is not required for the recruitment or retention of ATMs in epididymal adipose tissue of mice with HFD-induced obesity even though CX(3)CR1 promotes foam cell formation. This highlights an important point of divergence between the mechanisms regulating monocyte trafficking to fat with obesity and those that contribute to foam cell formation in atherogenesis.  相似文献   
23.
This cross-sectional study was aimed at reconstructing the exposure to gasoline in 102 petrol station attendants by environmental and biological monitoring of benzene, toluene, ethylbenzene and xylene (BTEX) and biomonitoring of methyl tert-butyl ether (MTBE). Airborne BTEX were higher for manual refuelers than self-service assistants and were highly correlated with each other. Significant relationships were found between airborne BTX and the corresponding urinary solvents (U-BTX) and beween airborne B and urinary MTBE (U-MTBE). Smokers eliminated higher values of U-B, trans,trans-muconic (t,t-MA) and S-phenylmercapturic (S-PMA) acids but not U-MTBE. All these biomarkers were, however, significantly raised during the shift, independently from smoking. Linear regression confirmed that occupational exposure was a main predictor of U-MTBE, U-B and S-PMA values, both the latter confounded by smoking habits. The study supports the usefulness of biomonitoring even at low exposure levels.  相似文献   
24.
Upon antigen recognition, T-cell receptor (TCR/CD3) and other signaling molecules become enriched in a specialized contact site between the T cell and antigen-presenting cell, i.e. the immunological synapse (IS). Enrichment occurs via mechanisms that include polarized secretion from recycling endosomes, but the Rabs and RabGAPs that regulate this are unknown. EPI64C (TBC1D10C) is an uncharacterized candidate RabGAP we identified by mass spectrometry as abundant in human peripheral blood T cells that is preferentially expressed in hematopoietic cells. EPI64C is a Rab35-GAP based both on in vitro Rab35-specific GAP activity and findings in transfection assays. EPI64C and Rab35 dominant negative (DN) constructs each impaired transferrin export from a recycling pathway in Jurkat T-cells and induced large vacuoles marked by transferrin receptor, TCR, and SNAREs implicated in TCR-polarized secretion. Rab35 localized to the plasma membrane and to intracellular vesicles where it substantially colocalized with TfR and with TCR. Rab35 was strongly recruited to the IS. Conjugate formation was impaired by transfection with Rab35-DN or EPI64C and by EPI64C knock down. TCR enrichment at the IS was impaired by Rab35-DN. Thus, EPI64C and Rab35 regulate a recycling pathway in T cells and contribute to IS formation, most likely by participating in TCR transport to the IS.  相似文献   
25.
Glycogen synthase kinase-3 (Gsk-3) is a key regulator of multiple signal transduction pathways. Recently we described a novel role for Gsk-3 in the regulation of DNA methylation at imprinted loci in mouse embryonic stem cells (ESCs), suggesting that epigenetic changes regulated by Gsk-3 are likely an unrecognized facet of Gsk-3 signaling. Here we extend our initial observation to the entire mouse genome by enriching for methylated DNA with the MethylMiner kit and performing next-generation sequencing (MBD-Seq) in wild-type and Gsk-3α−/−;Gsk-3β−/− ESCs. Consistent with our previous data, we found that 77% of known imprinted loci have reduced DNA methylation in Gsk-3-deficient ESCs. More specifically, we unambiguously identified changes in DNA methylation within regions that have been confirmed to function as imprinting control regions. In many cases, the reduced DNA methylation at imprinted loci in Gsk-3α−/−;Gsk-3β−/− ESCs was accompanied by changes in gene expression as well. Furthermore, many of the Gsk-3–dependent, differentially methylated regions (DMRs) are identical to the DMRs recently identified in uniparental ESCs. Our data demonstrate the importance of Gsk-3 activity in the maintenance of DNA methylation at a majority of the imprinted loci in ESCs and emphasize the importance of Gsk-3–mediated signal transduction in the epigenome.  相似文献   
26.
27.
28.
T-cell antigen receptor engagement causes the rapid assembly of signaling complexes. The adapter protein SLP-76, detected as SLP-yellow fluorescent protein, initially clustered with the TCR and other proteins, then translocated medially on microtubules. As shown by total internal reflection fluorescence microscopy and the inhibition of SLP-76 movement at 16 degrees C, this movement required endocytosis. Immunoelectron microscopy showed SLP-76 staining of smooth pits and tubules. Cholesterol depletion decreased the movement of SLP-76 clusters, as did coexpression of the ubiquitin-interacting motif domain from eps15. These data are consistent with the internalization of SLP-76 via a lipid raft-dependent pathway that requires interaction of the endocytic machinery with ubiquitinylated proteins. The endocytosed SLP-76 clusters contained phosphorylated SLP-76 and phosphorylated LAT. The raft-associated, transmembrane protein LAT likely targets SLP-76 to endocytic vesicles. The endocytosis of active SLP-76 and LAT complexes suggests a possible mechanism for downregulation of signaling complexes induced by TCR activation.  相似文献   
29.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3) mediates 1α,25(OH)2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3 +/− heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3 +/− mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3 +/− mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3 +/− mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3 +/− heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH)2D3’s actions in regulating skeletal development.  相似文献   
30.
The Hierarchical Taxonomy of Psychopathology (HiTOP) is a scientific effort to address shortcomings of traditional mental disorder diagnoses, which suffer from arbitrary boundaries between psychopathology and normality, frequent disorder co‐occurrence, heterogeneity within disorders, and diagnostic instability. This paper synthesizes evidence on the validity and utility of the thought disorder and detachment spectra of HiTOP. These spectra are composed of symptoms and maladaptive traits currently subsumed within schizophrenia, other psychotic disorders, and schizotypal, paranoid and schizoid personality disorders. Thought disorder ranges from normal reality testing, to maladaptive trait psychoticism, to hallucinations and delusions. Detachment ranges from introversion, to maladaptive detachment, to blunted affect and avolition. Extensive evidence supports the validity of thought disorder and detachment spectra, as each spectrum reflects common genetics, environmental risk factors, childhood antecedents, cognitive abnormalities, neural alterations, biomarkers, and treatment response. Some of these characteristics are specific to one spectrum and others are shared, suggesting the existence of an overarching psychosis superspectrum. Further research is needed to extend this model, such as clarifying whether mania and dissociation belong to thought disorder, and explicating processes that drive development of the spectra and their subdimensions. Compared to traditional diagnoses, the thought disorder and detachment spectra demonstrated substantially improved utility: greater reliability, larger explanatory and predictive power, and higher acceptability to clinicians. Validated measures are available to implement the system in practice. The more informative, reliable and valid characterization of psychosis‐related psychopathology offered by HiTOP can make diagnosis more useful for research and clinical care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号