首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623170篇
  免费   152874篇
  国内免费   1743篇
  1777787篇
  2021年   18261篇
  2019年   16276篇
  2018年   19155篇
  2017年   17997篇
  2016年   29220篇
  2015年   43244篇
  2014年   51354篇
  2013年   77548篇
  2012年   46869篇
  2011年   37800篇
  2010年   47004篇
  2009年   47234篇
  2008年   34654篇
  2007年   33299篇
  2006年   36595篇
  2005年   37632篇
  2004年   36777篇
  2003年   34046篇
  2002年   31899篇
  2001年   51806篇
  2000年   49672篇
  1999年   44904篇
  1998年   27571篇
  1997年   27383篇
  1996年   26548篇
  1995年   24711篇
  1994年   24327篇
  1993年   23559篇
  1992年   37824篇
  1991年   35903篇
  1990年   34521篇
  1989年   34958篇
  1988年   32210篇
  1987年   30249篇
  1986年   28607篇
  1985年   30024篇
  1984年   28164篇
  1983年   24369篇
  1982年   23139篇
  1981年   21987篇
  1980年   20475篇
  1979年   23788篇
  1978年   21285篇
  1977年   20128篇
  1976年   18850篇
  1975年   18918篇
  1974年   19704篇
  1973年   19977篇
  1972年   17128篇
  1971年   15646篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
992.
The yeast ascospore wall consists of four morphologically distinct layers. The hydrophobic surface layers are biogenically derived from the prospore wall and appear dark after OsO4 staining. They seem to be responsible for the stability of the spores against attack by lytic enzymes. By amino acid analysis of acid hydrolysates of ascospore walls, two new peaks were detected, which were shown to be the racemic and meso form, respectively, of dityrosine. The identity of this hitherto unknown component of the yeast ascospore wall with standard dityrosine was proven by 1H NMR and by mass spectrometry. A 13C NMR spectroscopic investigation of the structure of dityrosine confirmed that, in natural dityrosine, the biphenyl linkage is located ortho, ortho to the hydroxyl groups. Following digestion of the inner layers of isolated ascospore walls it was shown that dityrosine is very probably located only in the surface layers. The same conclusion was reached independently by an investigation of spores of a strain homozygous for the mutation gcn1, which lack the outermost layers of the spore wall and were practically devoid of dityrosine. In sporulating yeast, L-tyrosine was readily incorporated into the dityrosine of the ascospore wall. Control experiments involving vegetative a/alpha cells and nonsporulating alpha/alpha cells under sporulation conditions showed that dityrosine is indeed sporulation-specific.  相似文献   
993.
994.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   
995.
996.
997.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   
998.
999.
The time course of changes in the level of uncoupling protein mRNA when cold-acclimated mice were returned to a thermoneutral environment (33 degrees C) was examined using a cDNA probe. Upon deacclimation, there was a marked loss of uncoupling protein mRNA within 24 h, which precedes the loss of uncoupling protein from mitochondria. This loss of uncoupling protein mRNA was selective, since there was no change in the relative proportion of cytochrome c oxidase subunit IV mRNA or poly(A)+ RNA in total RNA. The results suggest that the decrease in the mitochondrial content of uncoupling protein during deacclimation is likely the result of turnover of existing protein, with very little replacement due to a lower level of its mRNA.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号