首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   10篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   4篇
  2012年   11篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   13篇
  2006年   14篇
  2005年   5篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1977年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
71.
Owing to its dual impact on tissue engineering (neovascularization of tissue implants) and cancer treatment (prevention of tumor-induced vascularization), management and elucidation of vascularization phenomena remain clinical priorities. Using a variety of primary human cells and (neoplastic) cell lines assembled in microtissues by gravity-enforced self-aggregation in hanging drops we (i) studied size and age-dependent VEGF production of microtissues in comparison to isogenic monolayer cultures, (ii) characterized the self-organization and VEGF-production potential of mixed-cell spheroids, (iii) analyzed VEGF-dependent capillary formation of human umbilical vein endothelial cells (HUVECs) cells coated onto several human primary cell spheroids, and (iv) profiled endostatin action on vascularization in human microtissues. Precise understanding of vascularization in human microtissues may foster advances in clinical tissue implant engineering, tumor treatment, as well as drug discovery and drug-function analysis.  相似文献   
72.
Capitalizing on a proven multicistronic expression vector platform we have designed novel pTRIDENT vectors which (1). enable coordinated expression of three desired transgenes, (2). are size-optimized, (3). take advantage of small highly efficient internal ribosome entry sites of the GTX or Rbm3 type, (4). harbor various sites specific for homing endonucleases facilitating promoter/multicistronic expression unit/polyadenylation site swapping as well as (5). straightforward integration into human HIV-l-based lentiviral expression vectors tailored to contain compatible homing endonucleases. Multicistronic expression profiles of novel pTRIDENT vectors engineered for different tricistronic expression configurations encoding human low-molecular-weight urokinase-type plasminogen activator (u-PA(LMW)) or Bacillus stearothermophilus-derived alpha-amylase (SAMY), human vascular endothelial growth factor (hVEGF), and human placental secreted alkaline phosphatase (SEAP) have been quantified in Chinese hamster ovary cells (CHO-K1), mouse fibroblasts (NIH/3T3), and/or human fibrosarcoma (HT-1080) cells. In addition, a pTRIDENT-derived SAMY-VEGF-SEAP expression cassette transferred into a compatible lentiviral expression vector enabled simultaneous high-level transgene expression following transduction of transgenic lentiviral particles into primary human chondrocytes.  相似文献   
73.
Increased expression of plasminogen activator inhibitor type 1 (PAI-1) is associated with decreased apoptosis of neoplastic cells. We sought to determine whether PAI-1 alters apoptosis in vascular smooth muscle cells (VSMC) and, if so, by what mechanisms. A twofold increase in the expression of PAI-1 was induced in VSMC from transgenic mice with the use of the SM-22alpha gene promoter (SM22-PAI+). Cultured VSMC from SM22-PAI+ mice were more resistant to apoptosis induced by tumor necrosis factor plus phorbol myristate acetate or palmitic acid compared with VSMC from negative control littermates. Both wild type (WT) and a stable active mutant form of PAI-1 (Active) inhibited caspase-3 amidolytic activity in cell lysates while a serpin-defective mutant (Mut) PAI-1 did not. Similarly, both WT and Active PAI-1 decreased amidolytic activity of purified caspase-3, whereas Mut PAI-1 did not. WT but not Mut PAI-1 decreased the cleavage of poly-[ADP-ribose]-polymerase (PARP), the physiological substrate of caspase-3. Noncovalent physical interaction between caspase-3 and PAI-1 was demonstrable with the use of both qualitative and quantitative in vitro binding assays. High affinity binding was eliminated by mutations that block PAI-1 serpin activity. Accordingly, attenuated apoptosis resulting from elevated expression of PAI-1 by VSMC may be attributable, at least in part, to reversible inhibition of caspase-3 by active PAI-1.  相似文献   
74.
75.
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013–2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP’s major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.  相似文献   
76.
For many years evidence has accumulated that sialic acids function in cellular interactions either by masking or as a recognition site. However, receptors or adhesion molecules mediating such functions between eukaryotic cells were unknown until about 5 years ago, when it was found that the members of the Selectin family mediate adhesion of leukocytes to specific endothelia through binding to sialylated glycans like sialyl Lewisx. More recently, the Sialoadhesin family of sialic acid-dependent adhesion molecules was defined within the superfamily of immunoglobulin-like molecules. So far, it has been shown that sialoadhesin (Sn), CD22, CD33, the myelin-associated glycoprotein (MAG) and the Schwann cell myelin protein (SMP) belong to this family. In contrast to the Selectins, these proteins are associated with diverse biological processes, i.e. hemopoiesis, neuronal development and immunity. In this review their properties, carbohydrate specificities and potential biological functions are discussed. Finally, we provide perspectives with respect to the nature of ligands, implications of sialic acid modifications and future research.Abbreviations IgSF immunoglobulin superfamily - MAG myelin-associated glycoprotein - Sia sialic acid - SMP Schwann cell myelin protein - Sn sialoadhesin  相似文献   
77.
An increasing number of mammalian cell adhesion molecules, including sialoadhesion, CD22 and the family of selectins, have been found to bind cell surface glycoconjugates containing sialic acids. Here we describe how the structural diversity of this sugar influences cell adhesion mediated by the related molecules sialoadhesin and CD22 in murine macrophages and B-cells respectively. We show that the 9-O-acetyl group of Neu5,9Ac2 and theN-glycoloyl residue of Neu5Gc interfere with sialoadhesin binding. In contrast, CD22 binds more strongly to Neu5Gc compared to Neu5Ac. Of two synthetic sialic acids tested, only CD22 bound theN-formyl derivative, whereas aN-trifluoroacetyl residue was accepted by sialoadhesin. The potential significance for the regulation of sialic acid dependent cell adhesion phenomena is discussed.Dedicated to Professor Dr Gerhard Uhlenbruck on the occasion of his 65th birthday.  相似文献   
78.
Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach.

To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ~20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.  相似文献   

79.
The galactose-recognizing system of rat peritoneal macrophages mediates the binding and uptake of desialylated blood cells and glycoproteins. To characterize the specificity of this receptor, binding studies were performed with various galactose derivatives as competitive inhibitors and sialidase-treated erythrocytes or asialoorosomucoid as ligands for receptors, which were either membrane-bound or isolated after solubilization. From the results obtained it can be concluded that galactose is recognized via its hydrophobic and/or hydrophilic regions, formed by the accumulation of OH-functions on one side and of H-atoms on the other ("side effect"), whereas the binding partner or the anomeric configuration of galactose has no significant influence. Although it became apparent that not a single hydroxyl group of the sugar is responsible for binding, the hydroxyl at C-4 seems to be most important, followed by the OH-group at C-3. Those at C-1, C-2 and C-6 do not play a great role. This order of importance ("position effect") was found with galactose, derivatized by methylation or otherwise, and with diastereomers of galactose. Whereas the recognition of a single galactose residue leads to weak binding only, an appropriate arrangement of several of these ligands in one molecule results in an enormous increase in the binding strength of each galactose residue. This "cluster effect" was observed not only with membrane-bound but also with solubilized receptor. However, the binding of asialoorosomucoid by the latter was better inhibited with free galactose, when compared with the membrane-bound receptor.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号