首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8503篇
  免费   932篇
  2022年   76篇
  2021年   195篇
  2020年   99篇
  2019年   124篇
  2018年   143篇
  2017年   125篇
  2016年   242篇
  2015年   401篇
  2014年   407篇
  2013年   472篇
  2012年   567篇
  2011年   614篇
  2010年   380篇
  2009年   346篇
  2008年   469篇
  2007年   442篇
  2006年   438篇
  2005年   417篇
  2004年   369篇
  2003年   326篇
  2002年   279篇
  2001年   172篇
  2000年   155篇
  1999年   135篇
  1998年   89篇
  1997年   74篇
  1996年   63篇
  1995年   65篇
  1994年   64篇
  1993年   72篇
  1992年   125篇
  1991年   102篇
  1990年   114篇
  1989年   92篇
  1988年   91篇
  1987年   79篇
  1986年   62篇
  1985年   72篇
  1984年   62篇
  1983年   62篇
  1982年   45篇
  1981年   33篇
  1980年   32篇
  1979年   54篇
  1978年   48篇
  1977年   47篇
  1976年   46篇
  1974年   36篇
  1973年   38篇
  1969年   40篇
排序方式: 共有9435条查询结果,搜索用时 62 毫秒
151.
152.
Carbon dioxide consumption during soil development   总被引:5,自引:1,他引:4  
Carbon is sequestered in soils by accumulation of recalcitrant organic matter and by bicarbonate weathering of silicate minerals. Carbon fixation by ecosystems helps drive weathering processes in soils and that in turn diverts carbon from annual photosynthesis-soil respiration cycling into the long-term geological carbon cycle. To quantify rates of carbon transfer during soil development in moist temperate grassland and desert scrubland ecosystems, we measured organic and inorganic residues derived from the interaction of soil biota and silicate mineral weathering for twenty-two soil profiles in arkosic sediments of differing ages. In moist temperate grasslands, net annual removal of carbon from the atmosphere by organic carbon accumulation and silicate weathering ranges from about 8.5 g m–2 yr–1 for young soils to 0.7 g M–2 yr–1 for old soils. In desert scrublands, net annual carbon removal is about 0.2 g m–2 yr–1 for young soils and 0.01 g m–2 yr–1 for old soils. In soils of both ecosystems, organic carbon accumulation exceeds CO2 removal by weathering, however, as soils age, rates of CO2 consumption by weathering accounts for greater amounts of carbon sequestration, increasing from 2% to 8% in the grassland soils and from 2% to 40% in the scrubland soils. In soils of desert scrublands, carbonate accumulation far outstrips organic carbon accumulation, but about 90% of this mass is derived from aerosolic sources that do not contribute to long-term sequestration of atmospheric carbon dioxide.  相似文献   
153.
The Saccharomyces cerevisiae strain AH22 was capable of human P4501A1 expression without detectable background of yeast P450, unlike ATCC44773. Repeated backcrossing to AH22 produced a strain allowing transformation by vectors carrying various common selectable markers. Background yeast xenobiotic metabolism was observed only with growth on complex medium.  相似文献   
154.
Abstract Naturally occuring betaines, especially glycine betaine and proline betaine, were accumulated by Escherichia coli from urine. In synthetic hyperosmotic medium, with an homologous series of added betaines, (CH3)3N+-(CH2) n -COO, osmoprotective activity and intracellular accumulation decreased monotonically as n increased from 1 to 5. In contrast, α -substituted glycine betaines were accumulated in a similar manner to glycine betaine, but with different osmoprotective activities. Arsenobetaine, with a quaternary arsonium group, was also accumulated but amino acids which can become negatively charged in a chemically basic environment were not.  相似文献   
155.
Molecular mapping techniques have defined the region of gene loss in two patients with the 5q- syndrome and uncharacteristically small 5q deletions (5q31-q33). The allelic loss of 10 genes localized to 5q23-qter (centromere-CSF2-EGR1-FGFA-GRL-ADRB2-CSF1R-SPARC-GLUH1-NKSF1-FLT4-telomere) was investigated in peripheral blood cell fractions. Gene dosage experiments demonstrated that CSF2, EGR1, NKSF1, and FLT4 were retained on the 5q- chromosome in both patients and that FGFA was retained in one patient, thus placing these genes outside the critical region. GRL, ADRB2, CSF1R, SPARC, and GLUH1 were shown to be deleted in both patients. The proximal breakpoint is localized between EGR1 and FGFA in one patient and between FGFA and ADRB2 in the other, and the distal breakpoint is localized between GLUH1 and NKSF1 in both patients. Pulsed-field gel electrophoresis was used to map the 5q deletion breakpoints, and breakpoint-specific fragments were detected with FGFA in the granulocyte but not the lymphocyte fraction of one patient. This study has established the critical region of gene loss of the 5q- chromosome in the 5q- syndrome, giving the location for a putative tumor-suppressor gene in the 5.6-Mb region between FGFA and NKSF1.  相似文献   
156.
Three protocols for the determination of inorganic and organic sulfur fractions were tested for their suitability to estimate total indigenous organic sulfur (Sorg) and35Sorg formed from added35SO4 2– in sediments of chemically dilute lakes in the ELA. The protocols tested have all been reported in the literature. It was found that two protocols involving sequential analyses for S fractions following acid treatment gave estimates of both Sorg and35Sorg up to 87% lower than a non-sequential protocol. The low estimates were largely due to hydrolysis and solubilization of solid phase S which was then removed in a rinsing step. The non-sequential protocol, in which total reduced inorganic sulfur and total sulfur were determined on separate aliquots, is recommended as the most reliable of the three. Individual analyses in this protocol were verified for these lake sediments using a variety of S standards.  相似文献   
157.
Rust in bean (Phaseolus vulgaris L.), caused byUromyces appendiculatus (Pers.) Unger var.appendiculatus [ =U. phaseoli (Reben) Wint.], is a major disease problem and production constraint in many parts of the world. The predominant form of genetic control of the pathogen is a series of major genes which necessitate the development of efficient selection strategies. Our objective was focused on the identification of RAPD (random amplified polymorphic DNA) markers linked to a major bean rust resistance gene block enabling marker-based selection and facilitating resistance gene pyramiding into susceptible bean germplasm. Using pooled DNA samples of genotyped individuals from two segregating populations, we identified two RAPD markers linked to the gene block of interest. One such RAPD, OF10970 (generated by a 5-GGAAGCTTGG-3 decamer), was found to be closely linked (2.15±1.50 centi Morgans) in coupling with the resistance gene block. The other identified RAPD, OI19460 (generated by a 5-AATGCGGGAG-3 decamer), was shown to be more tightly linked (also in coupling) than OF10970 as no recombinants were detected among 97 BC6F2 segregating individuals in the mapping population. Analysis of a collection of resistant and susceptible cultivars and experimental lines, of both Mesoamerican and Andean origin, revealed that: (1) recombination between OF10970 and the gene block has occurred as evidenced by the presence of the DNA fragment in several susceptible genotypes, (2) recombination between OI19460 and the gene block has also occurred indicating that the marker is not located within the gene block itself, and (3) marker-facilitated selection using these RAPD markers, and another previously identified, will enable gene pyramiding in Andean germplasm and certain Mesoamerican bean races in which the resistance gene block does not traditionally exist. Observations of variable recombination among Mesoamerican bean races suggested suppression of recombination between introgressed segments and divergent recurrent backgrounds.Research supported by the Michigan Agricultural Research Station and the USDA-ARS. Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   
158.
159.
160.
The bioenergetic role of the reduction of elemental sulfur (S0) in the hyperthermophilic archaeon (formerly archaebacterium) Pyrococcus furiosus was investigated with chemostat cultures with maltose as the limiting carbon source. The maximal yield coefficient was 99.8 g (dry weight) of cells (cdw) per mol of maltose in the presence of S0 but only 51.3 g (cdw) per mol of maltose if S0 was omitted. However, the corresponding maintenance coefficients were not found to be significantly different. The primary fermentation products detected were H2, CO2, and acetate, together with H2S, when S0 was also added to the growth medium. If H2S was summed with H2 to represent total reducing equivalents released during fermentation, the presence of S0 had no significant effect on the pattern of fermentation products. In addition, the presence of S0 did not significantly affect the specific activities in cell extracts of hydrogenase, sulfur reductase, alpha-glucosidase, or protease. These results suggest either that S0 reduction is an energy-conserving reaction, i.e., S0 respiration, or that S0 has a stimulatory effect on or helps overcome a process that is yield limiting. A modification of the Entner-Doudoroff glycolytic pathway has been proposed as the primary route of glucose catabolism in P. furiosus (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). Operation of this pathway should yield 4 mol of ATP per mol of maltose oxidized, from which one can calculate a value of 12.9 g (cdw) per mol of ATP for non-S0 growth. Comparison of this value to the yield data for growth in the presence of S0 reduction is equivalent to an ATP yield of 0.5 mol of ATP per mol of S0 reduced. Possible mechanism to account for this apparent energy conservation are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号