首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9670篇
  免费   1096篇
  2022年   82篇
  2021年   205篇
  2020年   105篇
  2019年   129篇
  2018年   150篇
  2017年   138篇
  2016年   256篇
  2015年   423篇
  2014年   439篇
  2013年   522篇
  2012年   612篇
  2011年   661篇
  2010年   421篇
  2009年   380篇
  2008年   502篇
  2007年   480篇
  2006年   484篇
  2005年   459篇
  2004年   407篇
  2003年   365篇
  2002年   325篇
  2001年   204篇
  2000年   194篇
  1999年   164篇
  1998年   102篇
  1997年   84篇
  1996年   68篇
  1995年   80篇
  1994年   76篇
  1993年   83篇
  1992年   141篇
  1991年   137篇
  1990年   140篇
  1989年   123篇
  1988年   109篇
  1987年   112篇
  1986年   85篇
  1985年   88篇
  1984年   82篇
  1983年   104篇
  1982年   68篇
  1980年   42篇
  1979年   74篇
  1978年   62篇
  1977年   60篇
  1976年   63篇
  1975年   41篇
  1974年   50篇
  1973年   54篇
  1969年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Uropathogenic Escherichia coli, the predominant causative agent of urinary tract infections, use type 1 pili to bind and invade bladder epithelial cells. Upon entry, the bacteria rapidly replicate and enter a complex developmental pathway ultimately forming intracellular bacterial communities (IBCs), a niche with biofilm-like properties protected from innate defences and antibiotics. Paradoxically, bacteria within IBCs produce type 1 pili, an organelle thought only to be an extracellular colonization factor. Thus, we investigated the function of type 1 pili in IBC development. The cystitis isolate, UTI89, was genetically manipulated for conditional fim expression under control of the tet promoter. In this strain, UTI89-tetR/P(tet) fim, piliation is constitutively inhibited by the tetracycline repressor, TetR. Repression is relieved by anhydrotetracycline (AHT) treatment. UTI89-tetR/P(tet) fim and the isogenic control strain, UTI89-tetR, grown in the presence of AHT, colonized the bladder and invaded the superficial umbrella cells at similar levels at early times in a murine model of infection. However, after invasion UTI89-tetR/P(tet) fim became non-piliated and was unable to form typical IBCs comprised of tightly packed, coccoid-shaped bacteria in contrast to the control strain, UTI89-tetR. Thus, this work changes the extracellular colonization functional paradigm of pili by demonstrating their intracellular role in biofilm formation.  相似文献   
942.
Gene conversion is a convergent strategy for pathogen antigenic variation   总被引:2,自引:0,他引:2  
Recent studies on three unrelated vector-borne pathogens, Anaplasma marginale, Borrelia hermsii and Trypanosoma brucei, illustrate the central importance of gene conversion as a mechanism for antigenic variation, which results in subsequent evasion of the immune response and persistence in the reservoir host. The combination of genome sequence data and in vivo studies tracking variant emergence not only provides insight into the genetic mechanisms for variant generation and hierarchy in variant expression but also highlights gaps in our knowledge regarding variant capacity and usage in vivo.  相似文献   
943.
Chromatin-induced spindle assembly depends on regulation of microtubule-depolymerizing proteins by the chromosomal passenger complex (CPC), consisting of Incenp, Survivin, Dasra (Borealin), and the kinase Aurora B, but the mechanism and significance of the spatial regulation of Aurora B activity remain unclear. Here, we show that the Aurora B pathway is suppressed in the cytoplasm of Xenopus egg extract by phosphatases, but that it becomes activated by chromatin via a Ran-independent mechanism. While spindle microtubule assembly normally requires Dasra-dependent chromatin binding of the CPC, this function of Dasra can be bypassed by clustering Aurora B-Incenp by using anti-Incenp antibodies, which stimulate autoactivation among bound complexes. However, such chromatin-independent Aurora B pathway activation promotes centrosomal microtubule assembly and produces aberrant achromosomal spindle-like structures. We propose that chromosomal enrichment of the CPC results in local kinase autoactivation, a mechanism that contributes to the spatial regulation of spindle assembly and possibly to other mitotic processes.  相似文献   
944.
This study aimed to evaluate the performance of hydrogen peroxide vapour (HPV) to inactivate the chimpanzee adenovirus AZD1222 vaccine strain used in the production of recombinant COVID-19 vaccine for application in cleaning validation in pharmaceutical industries production areas. Two matrixes were tested: formulated recombinant COVID-19 vaccine (FCV) and active pharmaceutical ingredient (API). The samples were dried on stainless steel and exposed to HPV in an isolator. One biological indicator with population >106 Geobacillus stearothermophilus spores was used to validate the HPV decontamination cycle as standard. HPV exposure resulted in complete virus inactivation in FVC (≥5·03 log10) and API (≥6·40 log10), showing HPV efficacy for reducing chimpanzee adenovirus AZD1222 vaccine strain. However, the optimum concentration and contact time will vary depending on the type of application. Future decontamination studies scaling up the process to the recombinant COVID-19 vaccine manufacturing areas are necessary to evaluate if the HPV will have the same or better virucidal effectivity in each specific production area. In conclusion, HPV showed efficacy for reducing AZD1222 chimpanzee adenovirus strain and can be a good choice for pharmaceutical industries facilities disinfection during recombinant COVID-19 vaccine production.  相似文献   
945.
946.
947.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   
948.
949.
Endocrine therapy has successfully been used to treat estrogen receptor (ER)-positive breast cancer, but this invariably fails with cancers becoming refractory to treatment. Emerging evidence has suggested that fluctuations in ER co-regulatory protein expression may facilitate resistance to therapy and be involved in breast cancer progression. To date, a small number of enzymes that control methylation status of histones have been identified as co-regulators of ER signalling. We have identified the histone H3 lysine 9 mono- and di-methyl demethylase enzyme KDM3A as a positive regulator of ER activity. Here, we demonstrate that depletion of KDM3A by RNAi abrogates the recruitment of the ER to cis-regulatory elements within target gene promoters, thereby inhibiting estrogen-induced gene expression changes. Global gene expression analysis of KDM3A-depleted cells identified gene clusters associated with cell growth. Consistent with this, we show that knockdown of KDM3A reduces ER-positive cell proliferation and demonstrate that KDM3A is required for growth in a model of endocrine therapy-resistant disease. Crucially, we show that KDM3A catalytic activity is required for both ER-target gene expression and cell growth, demonstrating that developing compounds which target demethylase enzymatic activity may be efficacious in treating both ER-positive and endocrine therapy-resistant disease.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号