首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3325篇
  免费   416篇
  3741篇
  2022年   23篇
  2021年   36篇
  2020年   29篇
  2019年   38篇
  2018年   36篇
  2017年   36篇
  2016年   58篇
  2015年   114篇
  2014年   117篇
  2013年   131篇
  2012年   183篇
  2011年   188篇
  2010年   122篇
  2009年   95篇
  2008年   168篇
  2007年   164篇
  2006年   153篇
  2005年   136篇
  2004年   179篇
  2003年   128篇
  2002年   120篇
  2001年   88篇
  2000年   104篇
  1999年   97篇
  1998年   64篇
  1997年   45篇
  1996年   35篇
  1995年   29篇
  1994年   34篇
  1993年   53篇
  1992年   71篇
  1991年   60篇
  1990年   56篇
  1989年   59篇
  1988年   63篇
  1987年   50篇
  1986年   46篇
  1985年   42篇
  1984年   44篇
  1983年   39篇
  1982年   30篇
  1981年   27篇
  1980年   19篇
  1979年   29篇
  1978年   20篇
  1977年   25篇
  1976年   30篇
  1975年   20篇
  1973年   24篇
  1972年   19篇
排序方式: 共有3741条查询结果,搜索用时 0 毫秒
181.
182.
We cloned Xenopus Strabismus (Xstbm), a homologue of the Drosophila planar cell or tissue polarity gene. Xstbm encodes four transmembrane domains in its N-terminal half and a PDZ-binding motif in its C-terminal region, a structure similar to Drosophila and mouse homologues. Xstbm is expressed strongly in the deep cells of the anterior neural plate and at lower levels in the posterior notochordal and neural regions during convergent extension. Overexpression of Xstbm inhibits convergent extension of mesodermal and neural tissues, as well as neural tube closure, without direct effects on tissue differentiation. Expression of Xstbm(DeltaPDZ-B), which lacks the PDZ-binding region of Xstbm, inhibits convergent extension when expressed alone but rescues the effect of overexpressing Xstbm, suggesting that Xstbm(DeltaPDZ-B) acts as a dominant negative and that both increase and decrease of Xstbm function from an optimum retards convergence and extension. Recordings show that cells expressing Xstbm or Xstbm(DeltaPDZ-B) fail to acquire the polarized protrusive activity underlying normal cell intercalation during convergent extension of both mesodermal and neural and that this effect is population size-dependent. These results further characterize the role of Xstbm in regulating the cell polarity driving convergence and extension in Xenopus.  相似文献   
183.
The two parameters of the hyperbolic tangent equation, Pm and, were estimated from in situ vertical profiles of primary productionusing mesocosm data along a nutrient gradient. The parameters,derived from 4-h (around noon) 14C incubations, were used togetherwith the photosynthesis-light curve and hourly solar radiationdata to calculate daily primary production rates (Pd). Approximately40% of the daily production occurred in the 4 h around noon.Considering parameter uncertainty, there was no indication ofan increase in variation in production with increased nutrientloading, nor did biomass-specific P-I parameters increase. Annualproduction ranged from 82 to 901 g C m–2 year–1and was highest in the highest nutrient treatment tank. Dailyproductivity ranged from 0.02 to 9.1 g C m–2 day–1and was significantly correlated, in all treatments, with acomposite parameter BI0/k (where B is phytoplankton biomass;I0 is daily radiation and k is the extinction coefficient).Linear regressions of Pd against BI0/k indicated that much ofthe variability (86%) in productivity was explained by lightavailability and phytoplankton biomass. Two approaches for predictingproductivity were compared: (i) predicting production directlyfrom environmental variables (i.e. BI0/k) and (ii) predictingthe parameters of the P-I curve from environmental variablesand using these to calculate daily production.  相似文献   
184.
OBJECTIVES: To investigate the impact of short-term growth measurements on predicting the individual growth response to GH treatment, and to elucidate the possible reasons for the limited accuracy of current growth prediction models for GH-treated children. METHODS: Short-term growth measurements by knemometry and stadiometer in 99 short, GH-treated children (27 girls, 72 boys), aged 10.3 +/- 2.3 years, from the Children's University Hospital, Leipzig, Germany. RESULTS: GH treatment significantly accelerated the mean height velocity (HV) from 4.3 +/- 1.0 to 8.1 +/- 1.8 cm/year during the first year of treatment, the average height standard deviation score (SDS) shifted by +0.52 SD. The variation in HV also increased, from S(2) = 1.0 before to S(2) = 3.4 cm(2)/year(2) during treatment. Lower leg length (LLL) velocity accelerated from 1.6 +/- 0.7 before treatment to 3.4 +/- 1.0 cm/year during the first 8 weeks of treatment. Four coefficients of correlation appeared clinically meaningful: (1) LLL velocity vs. body HV during the first year of GH treatment (r = 0.87), indicating that GH acts simultaneously on leg and rump growth; (2) early (first 8 weeks) LLL velocity vs. 1-year body HV during treatment, with r = 0.61 (R(2) = 0.38), indicating that 38% of the variation in HV during the first year of treatment is already predictable by an initial 8-week period of knemometry; (3) early (first 8 weeks) LLL velocity vs. 1-year LLL velocity during treatment, with r = 0.63 (R(2) = 0.39), and (4) early (first 8 weeks) LLL velocity vs. later LLL velocity, up to the end of the first year, with r = 0.53 (R(2) = 0.28) indicating that the early response on lower leg growth persists for at least 1 year of GH treatment. CONCLUSIONS: (1) Thirty-eight percent of the variation in HV during the first year of GH treatment is predictable by an initial 8-week period of knemometry. This parallels early changes in biochemical markers of bone turnover after GH treatment. (2) There is evidence for a baseline variability in HV both in healthy children and in children with growth disorders that make growth prediction difficult.  相似文献   
185.
Vascular endothelial growth factor (VEGF)mRNA undergoes alternative splicing events that generate four different homodimeric isoforms, VEGF121, VEGF165, VEGF189, or VEGF206. VEGF121 is a nonheparin-binding acidic protein, which is freely diffusible. The longer forms, VEGF189 or VEGF206, are highly basic proteins tightly bound to extracellular heparin-containing proteoglycans. VEGF165 has intermediate properties. To determine the localization of VEGF isoforms, transfected human embryonic kidney CEN4 cells expressing VEGF165, VEGF189, or VEGF206 were stained by immunofluorescence with a specific monoclonal antibody. The staining was found in patches and streaks suggestive of extracellular matrix (ECM). VEGF165 was observed largely in Golgi apparatus-like structures. Immunogold labeling of cells expressing VEGF189 or VEGF206 revealed that the staining was localized to the subepithelial ECM. VEGF associated with the ECM was bioactive, because endothelial cells cultured on ECM derived from cells expressing VEGF189 or VEGF206 were markedly stimulated to proliferate. In addition, ECM-bound VEGF can be released into a soluble and bioactive form by heparin or plasmin. ECM-bound VEGF189 and VEGF206 have molecular masses consistent with the intact polypeptides. The ECM may represent an important source of VEGF and angiogenic potential.  相似文献   
186.
Considerably fewer spores of Bacillus stearothermophilus, B. megaterium, and Clostridium sporogenes were recovered than were spores of B. subtilis var. niger and Aspergillus niger after 4 to 5 days at 53 and 60 C in ultrahigh vacuum. There were no significant differences in the recoveries of these five organisms at 25 C and atmospheric pressure, and after exposure to 25 and -190 C in vacuum. At 60 C, a far greater decrease in viability was demonstrated for B. stearothermophilus, B. megaterium, and C. sporogenes in ultrahigh vacuum than at atmospheric pressure. Viable B. subtilis var. niger spores were not detected in an initial 107 spores after retention at 90 C and ultrahigh vacuum, and 104 spores were viable after 5 days at 90 C and atmospheric pressure from an initial 106 spores. Molds and actinomycetes in soil were particularly resistant up to 69 C in vacuum. Actinomycetes were the only soil organisms recovered so far at 120 C.  相似文献   
187.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
188.
Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta‐analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.  相似文献   
189.
Walking speeds of female Trichogramma exiguum Pinto & Platner were fastest on maize and soybean (12 cm/min), intermediate on tomato (8 cm/min), and slowest on woolly mullein, Verbascum thapsus (3 cm/min). Similarly, rates of turning along the paths of walking T. exiguum were smallest on maize (median angle=0°±15°), intermediate on soybean and tomato, and greatest on V. thapsus (median angle=30°±15°). Leaf trichome density and morphology influenced walking behavior. Walking was slowed and flight initiation delayed for T. exiguum walking on Amaranthus hybridus leaves compared to either maize or filter paper. When inundative releases are conducted, the effects of plant surfaces on searching rates and arrestment should be considered in determining release rates of Trichogramma spp.
Résumé La vitesse de marche a été déterminée en lâchant des individus sur chaque substrat végétal et en traçant leur parcours sur une plaque de verre placée à 9 mm au dessus du sujet. Les déviations angulaires de portions successives des tracés, longues de 1 mm, ont été utilisées pour mesurer les taux de changement de direction. Dans une deuxième expérience, des individus ont été lâchés au milieu d'une cercle de 40 mm de diamètre sur chaque substrat et les temps écoulés avant l'envol ou pour atteindre le bord du cercle à la marche ont servi à évaluer respectivement la propension au vol et la vitesse de déambulation.Les vitesses de marche ont été plus rapides sur maïs et soja (12 cm/min), moyennes sur tomate (8 cm/min) et les plus lentes sur Verbascum thapsus (Scrophulariaceae) (3 cm/min). De le même façon, les angles de changement de direction au cours des marches effectuées par T. exiguum ont été plus petits sur maïs, moyens sur soja et tomate, et plus grands sur V. thapsus. Chez T. exiguum marchant sur des feuilles d'Amaranthus hybridus L. (Amaranthaceae), la marche a été plus lente et l'envol plus tardif que sur maîs ou papier filtre.Lors de lâchers inondatifs, les effets des surfaces végétales sur les vitesses d'exploration et d'arrêt devraient être pris en compte pour déterminer les vitesses de lâcher des Trichogramma spp.
  相似文献   
190.
A series of seven carboxy-terminal deletion mutants of oat phytochrome A were stably expressed in transgenic tobacco to localize phytochrome domains involved in chromophore attachment, spectral integrity, photoreversibility between the red light (Pr)- and far-red light (Pfr)-absorbing forms, dimerization, and biological activity. Amino acids necessary for chromophore attachment in vivo were localized to the amino-terminal 398 residues because mutant proteins this small had covalently bound chromophore. Deletion mutants from the carboxy terminus to residue 653 were spectrally indistinguishable from the full-length chromoprotein. In contrast, further truncation to residue 399 resulted in a chromoprotein with a bleached Pfr absorbance spectrum, Pr and Pfr absorbance maxima shifted toward shorter wavelengths, and reduced Pfr to Pr phototransformation efficiency. Thus, residues between 399 ad 652 are required for spectral integrity but are not essential for chromophore attachment. The sequence(s) between residues 919 and 1093 appears to be necessary for dimerization. Carboxy-terminal mutants containing this region behaved as dimers under nondenaturing conditions in vitro, whereas truncations without this region behaved as monomers. None of the plants expressing high levels of deletion mutants lacking the 35 carboxy-terminal amino acids displayed the light-exaggerated phenotype characteristic of plants expressing biologically active phytochrome A, even when the truncated phytochromes were expressed at levels 6- to 15-fold greater than that effective for the full-length chromoprotein. Collectively, these data show that the phytochrome protein contains several separable carboxy-terminal domains required for structure/function and identify a domain within 35 residues of the carboxy terminus that is critical for the biological activity of the photoreceptor in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号