首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1402篇
  免费   110篇
  国内免费   2篇
  1514篇
  2023年   5篇
  2022年   11篇
  2021年   23篇
  2020年   17篇
  2019年   13篇
  2018年   19篇
  2017年   16篇
  2016年   22篇
  2015年   45篇
  2014年   56篇
  2013年   67篇
  2012年   90篇
  2011年   72篇
  2010年   60篇
  2009年   45篇
  2008年   87篇
  2007年   67篇
  2006年   63篇
  2005年   57篇
  2004年   65篇
  2003年   54篇
  2002年   46篇
  2001年   49篇
  2000年   30篇
  1999年   37篇
  1998年   17篇
  1997年   8篇
  1996年   19篇
  1995年   5篇
  1994年   12篇
  1993年   10篇
  1992年   27篇
  1991年   28篇
  1990年   22篇
  1989年   19篇
  1988年   23篇
  1987年   19篇
  1986年   15篇
  1985年   24篇
  1984年   17篇
  1983年   6篇
  1982年   12篇
  1981年   9篇
  1980年   9篇
  1979年   12篇
  1978年   11篇
  1975年   7篇
  1974年   7篇
  1973年   4篇
  1969年   5篇
排序方式: 共有1514条查询结果,搜索用时 15 毫秒
71.
The gp190 transmembrane protein, the low affinity receptor for the leukemia inhibitory factor (LIF), belongs to the hematopoietin family of receptors characterized by the cytokine binding domain (CBD). gp190 is one of the very few members of this family to contain two such domains. The membrane-proximal CBD (herein called D2) is separated from the membrane-distal one (called D1) by an immunoglobulin-like (Ig) domain and is followed by three fibronectin type III repeats. We used truncated gp190 mutants and a blocking anti-gp190 monoclonal antibody to study the role of these repeats in low affinity receptor function. Our results showed that the D1Ig region was involved in LIF binding, while D2 appeared to be crucial for the proper folding of D1, suggesting functionally important interactions between the two CBDs in the wild-type protein. In addition, a point mutation in the carboxyl terminus of the Ig region strongly impaired ligand binding. These findings suggest that at least two distinct sites, both located within the D1Ig region, are involved in LIF binding to gp190, and more generally, that ligand binding sites on these receptors may well be located outside the canonical CBDs.  相似文献   
72.
73.
Maternal diabetes has been demonstrated to adversely affect preimplantation embryo development and pregnancy outcomes. Emerging evidence has implicated that these effects are associated with compromised oocyte competence. Several developmental defects during oocyte maturation in diabetic mice have been reported over past decades. Most recently, we further identified the structural, spatial and metabolic dysfunction of mitochondria in oocytes from diabetic mice, suggesting the impaired oocyte quality. These defects in the oocyte may be maternally transmitted to the embryo and then manifested later as developmental abnormalities in preimplantation embryo, congenital malformations, and even metabolic disease in the offspring. In this paper, we briefly review the effects of maternal diabetes on oocyte quality, with a particular emphasis on the mitochondrial dysfunction. The possible connection between dysfunctional oocyte mitochondria and reproductive failure of diabetic females, and the mechanism(s) by which maternal diabetes exerts its effects on the oocyte are also discussed.  相似文献   
74.
75.
Oxidative stress induces in endothelial cells a quick and transient coactivation of both stress-activated protein kinase-2/p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. We found that inhibiting the ERK pathway resulted, within 5 min of oxidative stress, in a misassembly of focal adhesions characterized by mislocalization of key proteins such as paxillin. The focal adhesion misassembly that followed ERK inhibition with the mitogen-activated protein kinase kinase (MEK) inhibitor PD098059 (2'-amino-3'-methoxyflavone) or with a kinase negative mutant of ERK in the presence of H(2)O(2) resulted in a quick and intense membrane blebbing that was associated with important damage to the endothelium. We isolated by two-dimensional gel electrophoresis a PD098059-sensitive phosphoprotein of 38 kDa that we identified, by mass spectrometry, as tropomyosin-1. In fact, H(2)O(2) induced a time-dependent phosphorylation of tropomyosin that was sensitive to inhibition by PD098059 and UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butanediane). Tropomyosin phosphorylation was also induced by expression of a constitutively activated form of MEK1 (MEK(CA)), which confirms that its phosphorylation resulted from the activation of ERK. In unstimulated cells, tropomyosin-1 was found diffuse in the cells, whereas it quickly colocalized with actin and stress fibers upon stimulation of ERK by H(2)O(2) or by expression of MEK(CA). We propose that phosphorylation of tropomyosin-1 downstream of ERK by contributing to formation of actin filaments increases cellular contractility and promotes the formation of focal adhesions. Incidentally, ML-7 (1-[5iodonaphthalene-1-sulfonyl]homopiperazine, HCl), an inhibitor of cell contractility, inhibited phosphorylation of tropomyosin and blocked the formation of stress fibers and focal adhesions, which also led to membrane blebbing in the presence of oxidative stress. Our finding that tropomyosin-1 is phosphorylated downstream of ERK, an event that modulates its interaction with actin, may lead to further understanding of the role of this protein in regulating cellular functions associated with cytoskeletal remodeling.  相似文献   
76.
Ion channel‐coupled receptors (ICCR) are artificial proteins built from a G protein‐coupled receptor and an ion channel. Their use as molecular biosensors is promising in diagnosis and high‐throughput drug screening. The concept of ICCR was initially validated with the combination of the muscarinic receptor M2 with the inwardly rectifying potassium channel Kir6.2. A long protein engineering phase has led to the biochemical characterization of the M2‐Kir6.2 construct. However, its molecular mechanism remains to be elucidated. In particular, it is important to determine how the activation of M2 by its agonist acetylcholine triggers the modulation of the Kir6.2 channel via the M2‐Kir6.2 linkage. In the present study, we have developed and validated a computational approach to rebuild models of the M2‐Kir6.2 chimera from the molecular structure of M2 and Kir6.2. The protocol was first validated on the known protein complexes of the μ‐opioid Receptor, the CXCR4 receptor and the Kv1.2 potassium channel. When applied to M2‐Kir6.2, our protocol produced two possible models corresponding to two different orientations of M2. Both models highlights the role of the M2 helices I and VIII in the interaction with Kir6.2, as well as the role of the Kir6.2 N‐terminus in the channel opening. Those two hypotheses will be explored in a future experimental study of the M2‐Kir6.2 construct. Proteins 2014; 82:1694–1707. © 2014 Wiley Periodicals, Inc.  相似文献   
77.
An abundant ichnological material composed of xiphosuran trackways and isolated traces was discovered in Upper Jurassic limestones from the Causses Basin (Causse Méjean, Lozère, France). The morphology of the imprints supports their identification as Kouphichnium isp. In contrast to the most frequent case, the trackways are composed of omnipresent pusher imprints sometime associated with leg traces, but with no telson mark. We argue that this pattern reflects actual surface traces rather than an incomplete set of undertracks. The size distribution of the sampled ichnites is broadly bimodal. This is best explained by sexual dimorphism, a phenomenon frequently observed in modern xiphosurans. Analysis of the trace fossils further suggests that several growth stages are recorded and that the horseshoe crabs were walking in a protected and flat environment like a lagoon. This area, certainly close to a mating ground, was occasionally affected by a continental influence. The biometric study of the tracks suggests a gigantic size for the trackmakers whose body may have reached 84 cm in length. This discovery complements the few reports on other gigantic horseshoe crabs in the Jurassic of Western Europe, thus casting doubt on the postulated increase in body size from the Palaeozoic to the Recent. Furthermore, a literature review shows that there are still major gaps in the record of limulid body-fossils and tracks. Thus, neither of these archives can be taken at face value for quantifying the body-size evolution of horseshoe crabs.  相似文献   
78.
Although winter conditions play a major role in determining the productivity of the western Antarctic Peninsula (WAP) waters for the following spring and summer, a few studies have dealt with the seasonal variability of microorganisms in the WAP in winter. Moreover, because of regional warming, sea-ice retreat is happening earlier in spring, at the onset of the production season. In this context, this study describes the dynamics of the marine microbial community in the Melchior Archipelago (WAP) from fall to spring 2006. Samples were collected monthly to biweekly at four depths from the surface to the aphotic layer. The abundance and carbon content of bacteria, phytoplankton and microzooplankton were analyzed using flow cytometry and inverted microscopy, and bacterial richness was examined by PCR–DGGE. As expected, due to the extreme environmental conditions, the microbial community abundance and biomass were low in fall and winter. Bacterial abundance ranged from 1.2 to 2.8 × 105 cells ml?1 showing a slight increase in spring. Phytoplankton biomass was low and dominated by small cells (<2 μm) in fall and winter (average chlorophyll a concentration, Chl-a, of, respectively, 0.3 and 0.13 μg l?1). Phytoplankton biomass increased in spring (Chl-a up to 1.13 μg l?1), and, despite potentially adequate growth conditions, this rise was small and phytoplankton was still dominated by small cells (2–20 μm). In addition, the early disappearing of sea-ice in spring 2006 let the surface water exposed to ultraviolet B radiations (UVBR, 280–320 nm), which seemed to have a negative impact on the microbial community in surface waters.  相似文献   
79.
Cu foam is evaluated as a replacement for metal foil current collectors to create 3D composite electrodes with the objective to produce Si‐based anodes with high loadings. The electrodes are prepared by casting the slurry into the porosity of the foam. With such a design, the loading and the surface capacity can reach values as high as 10 mg cm?2 and 10 mAh cm?2. Compared to the common 2D design, the 3D copper framework shows a great advantage in the cycle life (more than 400 cycles at a Si loading of 10 mg cm?2 with commercial micrometric particles) and power performance. The thinness of the composite coating on the foam walls favors a better preservation of the electronic wiring upon cycling and fast lithium ion diffusion. A higher coulombic efficiency in half cells with lithium metal as the counter electrode is achieved by using carbon nanofibers (CNF) rather than carbon black (CB). The possibility to reach, in practice, higher surface capacity could allow a significant increase in both the volumetric and gravimetric energy densities by 23% and 19%, respectively, for the Cu foam‐silicon//LiFePO4 stack compared to the graphite/LiFePO4 stack of traditional design.  相似文献   
80.
The effects of alpha-, beta- and gamma-cyclodextrins on the amylose and maltopentaose hydrolysis catalysed by porcine pancreatic alpha-amylase (PPA) were investigated. The results of the statistical analysis performed on the kinetic data using the general initial velocity equation of a one-substrate reaction in the presence of one inhibitor indicate that the type of inhibition involved depends on the substrate used: the inhibition of amylose hydrolysis by alpha-, beta- and gamma-cyclodextrin is of the competitive type, while the inhibition of maltopentaose hydrolysis is of the mixed noncompetitive type. Consistently, the Lineweaver-Burk plots intersect on the vertical axis when amylose is used as the substrate, while in the case of maltopentaose, the intersection occurs at a point located in the second quadrant. The inhibition of the hydrolysis therefore involves only one abortive complex, PPA-cyclodextrin, when amylose is used as the substrate, while two abortive complexes, PPA-cyclodextrin and PPA-maltopentaose-cyclodextrin, are involved with maltopentaose. The mixed noncompetitive inhibition thus shows the existence of one accessory binding site. In any case, only one molecule of inhibitor binds to PPA. In line with these findings, the difference spectra of PPA produced by alpha-, beta- and gamma-cyclodextrin indicate that binding occurs at a tryptophan and a tyrosine residue. The corresponding dissociation constants and the inhibition constants obtained using the kinetic approach are in the same range (1.2-7 mM). The results obtained here on the inhibition of maltopentaose hydrolysis by cyclodextrin are similar to those previously obtained with acarbose as the inhibitor [Alkazaz, M., Desseaux, V., Marchis-Mouren, G., Prodanov, E. & Santimone, M. (1998) Eur. J. Biochem. 252, 100-107], but differ from those obtained with amylose as the substrate and acarbose as inhibitor [Alkazaz, M., Desseaux, V., Marchis-Mouren, G., Payan, F., Forest, E. & Santimone, M. (1996) Eur. J. Biochem. 241, 787-796]. It is concluded that the hydrolysis of both long and short chain substrates requires at least one secondary binding site, including a tryptophan residue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号