首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3741篇
  免费   330篇
  国内免费   487篇
  4558篇
  2024年   22篇
  2023年   68篇
  2022年   163篇
  2021年   252篇
  2020年   177篇
  2019年   213篇
  2018年   186篇
  2017年   172篇
  2016年   186篇
  2015年   254篇
  2014年   285篇
  2013年   331篇
  2012年   351篇
  2011年   301篇
  2010年   193篇
  2009年   200篇
  2008年   191篇
  2007年   149篇
  2006年   158篇
  2005年   117篇
  2004年   76篇
  2003年   72篇
  2002年   51篇
  2001年   39篇
  2000年   36篇
  1999年   48篇
  1998年   26篇
  1997年   25篇
  1996年   23篇
  1995年   33篇
  1994年   25篇
  1993年   23篇
  1992年   21篇
  1991年   11篇
  1990年   8篇
  1989年   8篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   14篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有4558条查询结果,搜索用时 15 毫秒
131.
132.
  相似文献   
133.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   
134.
The bile acid-activated nuclear receptor farnesoid X receptor (FXR) plays an important role in lipid and glucose metabolism, and in addition, it regulates multiple drug transporters involved in statin disposition. We examined whether a functional single nucleotide polymorphism (SNP) in FXR (-1G>T) influenced the lipid-lowering effect of rosuvastatin. In 385 Chinese patients with hyperlipidemia who had been treated with rosuvastatin 10 mg daily for at least 4 weeks, the association between the FXR -1G>T SNP and lipid response to rosuvastatin was analyzed. The FXR -1G>T SNP was not associated with baseline lipids but was significantly associated with the LDL cholesterol (LDL-C) and total cholesterol response to rosuvastatin. Carriers of the T-variant allele (GT+TT = 68+3) had 4.4% (95% CI: 1.2, 7.5%, P = 0.006) and 2.6% (95% CI: 0.3, 5.0%; P < 0.05) greater reductions in LDL-C and total cholesterol, respectively, compared with those with homozygous wild-type alleles. The association between the FXR polymorphism and the LDL-C response to rosuvastatin remained significant after adjusting for other covariants. This association of the variant allele of the FXR -1G>T polymorphism with a greater LDL-C response to rosuvastatin may suggest that this polymorphism influences the expression of the hepatic efflux transporters involved in biliary excretion of rosuvastatin.  相似文献   
135.
Telomerase contributes to cell proliferation and survival through both telomere‐dependent and telomere‐independent mechanisms. In this report, we discovered that endoplasmic reticulum (ER) stress transiently activates the catalytic components of telomerase (TERT) expression in human cancer cell lines and murine primary neural cells. Importantly, we show that depletion of hTERT sensitizes cells to undergo apoptosis under ER stress, whereas increased hTERT expression reduces ER stress‐induced cell death independent of catalytically active enzyme or DNA damage signaling. Our findings establish a functional link between ER stress and telomerase, both of which have important implications in the pathologies associated with aging and cancer.  相似文献   
136.
The identity of the labellum is a hot point in Zingiberales, which has long been discussed by many authors. In this study, floral vasculature and ontogeny of Canna indica (Cannaceae) was observed by LM and SEM in order to ascertain the identity of the labellum and the functional stamen of this species and provide evidence for the homologies of the floral organs in Zingiberales. The results indicate that the labellum of C. indica have incorporated two androecial members from both outer and inner whorls, rather than three, one or half member, as previously suggested by morphologists of Cannaceae flowers. The two labellum traces are here interpreted as: one from the outer androecial whorl (diverging from the carpellary dorsal bundle), while the other from the inner androecial whorl (diverging from the parietal bundle). The functional stamen also incorporates two androecial bundles, the same as the labellum: one trace from the carpellary dorsal bundle, and the other (the petaloid appendage) from the parietal bundle. In addition, the origin of the vascular system in the androecium of Zingiberales and its systematic significance are discussed.  相似文献   
137.
It is unclear how stress granule (SG) formation and cellular apoptosis are coordinately regulated. MCPIP1 (monocyte chemotactic protein-induced protein 1), also known as Zc3h12a, is a critical regulator of the inflammatory response and immune homeostasis. However, the role of MCPIP1 in stress response remains unknown. Here, we report that overexpression of MCPIP1 inhibited the assembly of SGs in response to various stresses. Conversely, MCPIP1-deficient splenocytes developed more SGs even without stress. On the other hand, overexpression of MCPIP1 sensitized RAW 264.7 cells to apoptosis under stress, whereas MCPIP1-deficient cells were resistant to stress-induced apoptosis. Mutagenesis study showed that the ability of MCPIP1 to repress SG formation is dependent on its deubiquitinating activity. Consistently, MCPIP1 negatively regulated stress-induced phosphorylation of eIF2α and thus released stress-induced inhibition of protein translation. However, MCPIP1 also inhibited 15-deoxy-Δ(12,14)-prostaglandin J(2)-induced SG formation, which was reported to be independent of eIF2α phosphorylation. Taken together, these results suggest that MCPIP1 coordinates SG formation and apoptosis during cellular stress and may play a critical role in immune homeostasis and resolution of macrophage inflammation.  相似文献   
138.
Sun L  Li DL  Zhao M  He X  Yu XJ  Miao Y  Wang H  Ren J  Zang WJ 《PloS one》2011,6(11):e25618
Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2) muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1) adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) and the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME). These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine-mediated cardioprotection.  相似文献   
139.
Liu M  Talmadge JE  Ding SJ 《Amino acids》2012,42(5):1541-1551
Protein S-nitrosylation is the covalent redox-related modification of cysteine sulfhydryl groups with nitric oxide, creating a regulatory impact similar to phosphorylation. Recent studies have reported a growing number of proteins to be S-nitrosylated in vivo resulting in altered functions. These studies support S-nitrosylation as a critical regulatory mechanism, fine-tuning protein activities within diverse cellular processes and biochemical pathways. In addition, S-nitrosylation appears to have key roles in the etiology of a broad range of human diseases. In this review, we discuss recent advances in proteomic approaches for the enrichment, identification, and quantitation of cysteine S-nitrosylated proteins and peptides. These advances have provided analytical tools with the power to interpret the impact of S-nitrosylation at the system level, providing a new platform for drug discovery and the identification of diagnostic markers for human diseases.  相似文献   
140.
Xu J  Wang S  Zhang M  Wang Q  Asfa S  Zou MH 《PloS one》2012,7(1):e29649
Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO(-)) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets-fed LDL receptor knockout (LDLr(-/-)) mice. The elevated 26S proteasome activities were accompanied by ONOO(-)-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO(-)-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号