首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8287篇
  免费   821篇
  国内免费   6篇
  9114篇
  2022年   46篇
  2021年   82篇
  2020年   60篇
  2019年   83篇
  2018年   98篇
  2017年   101篇
  2016年   156篇
  2015年   291篇
  2014年   298篇
  2013年   434篇
  2012年   561篇
  2011年   516篇
  2010年   330篇
  2009年   325篇
  2008年   516篇
  2007年   530篇
  2006年   476篇
  2005年   495篇
  2004年   470篇
  2003年   451篇
  2002年   358篇
  2001年   100篇
  2000年   87篇
  1999年   98篇
  1998年   113篇
  1997年   93篇
  1996年   89篇
  1995年   84篇
  1994年   64篇
  1993年   77篇
  1992年   90篇
  1991年   69篇
  1990年   66篇
  1989年   76篇
  1988年   70篇
  1987年   57篇
  1986年   54篇
  1985年   60篇
  1984年   68篇
  1983年   64篇
  1982年   72篇
  1981年   62篇
  1980年   64篇
  1979年   59篇
  1978年   44篇
  1976年   40篇
  1975年   40篇
  1974年   58篇
  1973年   44篇
  1972年   37篇
排序方式: 共有9114条查询结果,搜索用时 0 毫秒
81.
Six thionucleosides found in Bacillus subtilis transfer ribonucleic acids were investigated: N6-(delta 2-isopentenyl)-2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, 2-methylthioadenosine, N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, and one unknown (X1). The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine was demonstrated based on the affinity of the transfer ribonucleic acid containing it for an immunoadsorbent made with the antibody directed toward N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine. The existance of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in two species of lysine transfer ribonucleic acids was also confirmed by high-resolution mass spectrometry. Four of these thionucleosides--N6-(delta 2-isopenenyl)-2-methylthioadenosine, 2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, and the unknown designated X1--occurred only in specific areas in the elution profile of an RPC-5 column and probably affect the chromatographic properties of the transfer ribonucleic acids containing them. In contrast with Escherichia coli, where 4-thiouridine is the most frequent type of sulfur-containing modification, approximately one-third of the sulfur groups in B. subtilis transfer ribonucleic acid are present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue.  相似文献   
82.
83.
Highly purified tRNAPhe from rabbit liver, calf liver and bovine liver were completely digested with pancreatic ribonuclease and ribonuclease T1. The oligonucleotides were separated and identified. The tRNAPhe from rabbit liver and calf liver were partially cleaved with ribonuclease T1 or by action of lead acetate. We describe the analyses of the large fragments and the derivation of the primary structure of these mammalian tRNAsPhe.  相似文献   
84.
The kinetics of denaturation of egg albumin have been determined for methanol, ethanol, propanol, and butanol. The reactions are first order in respect to protein but between 11th and 18th order for the alcohols. The denaturation reaction is characterized by a large temperature coefficient with little or no dependence on pH. There is a marked change of pH when proteins are denatured. A series of eight proteins has been studied. There is surprisingly little difference in susceptibility to alcohol denaturation between the various proteins. Methanol, ethanol, propanol, and butanol are strongly bound to egg albumin—butanol being the most strongly bound. The binding of alcohol is probably accompanied by protein dehydration. The polyhydric alcohols' behavior is much different. These alcohols do not denature proteins and the protein is hydrated. Sucrose produces the greatest degree of hydration.  相似文献   
85.
Klebsiella K23 capsular polysaccharide has been investigated by the techniques of hydrolysis, methylation, Smith degradation-periodate oxidation, and base-catalysed degradation, either on the original or the carboxyl-reduced polysaccharide. The structure was found to consist of a tetrasaccharide repeating-unit, as shown below. The anomeric configurations of the sugar residues were determined by 1H-and 13C-n.m.r. spectroscopy on the original and degraded polysaccharides.
  相似文献   
86.
87.
88.
89.
90.
A complex network of trade-offs exists between wheat quality and nutritional traits. We investigated the correlated relationships among several milling and baking traits as well as mineral density in refined white and whole grain flour. Our aim was to determine their pleiotropic genetic control in a multi-parent population over two trial years with direct application to practical breeding. Co-location of major quantitative trait loci (QTL) and principal component based multi-trait QTL mapping increased the power to detect QTL and revealed pleiotropic effects explaining many complementary and antagonistic trait relationships. High molecular weight glutenin subunit genes explained much of the heritable variation in important dough rheology traits, although additional QTL were detected. Several QTL, including one linked to the TaGW2 gene, controlled grain size and increased flour extraction rate. The semi-dwarf Rht-D1b allele had a positive effect on Hagberg falling number, but reduced grain size, specific weight, grain protein content and flour water absorption. Mineral nutrient concentrations were lower in Rht-D1b lines for many elements, in wholemeal and white flour, but potassium concentration was higher in Rht-D1b lines. The presence of awns increased calcium content without decreasing extraction rate, despite the negative correlation between these traits. QTL were also found that affect the relative concentrations of key mineral nutrients compared to phosphorus which may help increase bioavailability without associated anti-nutritional effects of phytic acid. Taken together these results demonstrate the potential for marker-based selection to optimise trait trade-offs and enhance wheat nutritional value by considering pleiotropic genetic effects across multiple traits.Subject terms: Plant breeding, Quantitative trait, Genetic variation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号