首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7900篇
  免费   768篇
  国内免费   6篇
  8674篇
  2022年   46篇
  2021年   79篇
  2020年   55篇
  2019年   82篇
  2018年   97篇
  2017年   99篇
  2016年   154篇
  2015年   282篇
  2014年   287篇
  2013年   399篇
  2012年   539篇
  2011年   508篇
  2010年   320篇
  2009年   317篇
  2008年   506篇
  2007年   513篇
  2006年   460篇
  2005年   475篇
  2004年   453篇
  2003年   431篇
  2002年   351篇
  2001年   83篇
  2000年   73篇
  1999年   86篇
  1998年   110篇
  1997年   88篇
  1996年   86篇
  1995年   74篇
  1994年   57篇
  1993年   69篇
  1992年   77篇
  1991年   58篇
  1990年   61篇
  1989年   68篇
  1988年   68篇
  1987年   54篇
  1986年   46篇
  1985年   56篇
  1984年   63篇
  1983年   59篇
  1982年   64篇
  1981年   56篇
  1980年   62篇
  1979年   56篇
  1978年   43篇
  1977年   36篇
  1976年   40篇
  1975年   39篇
  1974年   56篇
  1973年   43篇
排序方式: 共有8674条查询结果,搜索用时 15 毫秒
111.
112.
113.
Nehme D  Poole K 《Journal of bacteriology》2007,189(17):6118-6127
In an effort to identify key domains of the Pseudomonas aeruginosa MexAB-OprM drug efflux system involved in component interactions, extragenic suppressors of various inactivating mutations in individual pump constituents were isolated and studied. The multidrug hypersusceptibility of P. aeruginosa expressing MexB with a mutation in a region of the protein implicated in oligomerization (G220S) was suppressed by mutations in the alpha/beta domain of MexA. MexB(G220S) showed a reduced ability to bind MexA in vivo while representative MexA suppressors (V66M and V259F) restored the MexA-MexB interaction. Interestingly, these suppressors also restored resistance in P. aeruginosa expressing OprM proteins with mutations at the proximal (periplasmic) tip of OprM that is predicted to interact with MexB, suggesting that these suppressors generally overcame defects in MexA-MexB and MexB-OprM interaction. The multidrug hypersusceptibility arising from a mutation in the helical hairpin of MexA implicated in OprM interaction (V129M) was suppressed by mutations (T198I and F439I) in the periplasmic alpha-helical barrel of OprM. Again, the MexA mutation compromised an in vivo interaction with OprM that was restored by the T198I and F439I substitutions in OprM, consistent with the hairpin domain mediating MexA binding to this region of OprM. Interestingly, these OprM suppressor mutations restored multidrug resistance in P. aeruginosa expressing MexB(G220S). Finally, the oprM(T198I) suppressor mutation enhanced the yields of all three constituents of a MexA-MexB-OprM(T198I) pump as detected in whole-cell extracts. These data highlight the importance of MexA and interactions with this adapter in promoting MexAB-OprM pump assembly and in stabilizing the pump complex.  相似文献   
114.
Cell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells. In this study, we extend this juxtamembrane cross-talk between cytokine and growth factor receptors to downstream cell cycle machinery. IL-1beta reduces the ability of IGF-I to activate Cdk2 and to induce E2F-1, cyclin A, and cyclin A-dependent phosphorylation of a retinoblastoma tumor suppressor substrate. Long-term activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, but not the mammalian target of rapamycin or mitogen-activated protein kinase pathways, is required for IGF-I to hyperphosphorylate retinoblastoma and to cause accumulation of E2F-1 and cyclin A. In the absence of IGF-I to induce Akt activation and cell cycle progression, IL-1beta has no effect. IL-1beta induces p21(Cip1/Waf1), which may contribute to its inhibition of IGF-I-activated Cdk2. Collectively, these data establish a novel mechanism by which prolonged Akt phosphorylation serves as a convergent target for both IGF-I and IL-1beta; stimulation by growth factors such as IGF-I promotes G(1)-S phase progression, whereas IL-1beta antagonizes IGF-I-induced Akt phosphorylation to induce cytostasis. In this manner, Akt serves as a critical bridge that links proximal receptor signaling events to more distal cell cycle machinery.  相似文献   
115.
An increase in the association of heat shock protein 90 (HSP90) with endothelial nitric oxide (NO) synthase (eNOS) is well recognized for increasing NO (NO*) production. Despite the progress in this field, the mechanisms by which HSP90 modulates eNOS remain unclear due, in part, to the fact that geldanamycin (GA) redox cycles to generate superoxide anion (O(2)(-*) and the fact that inhibiting HSP90 with GA or radicicol (RAD) destabilizes tyrosine kinases that rely on the chaperone for maturation. In this report, we determine the extent to which these side effects alter vascular and endothelial cell function in physiologically relevant systems and in cultured endothelial cells. Vascular endothelial growth factor (VEGF)-stimulated vascular permeability, as measured by Evans blue leakage in the ears of male Swiss mice in vivo, and acetylcholine-induced vasodilation of isolated, pressurized mandibular arterioles from male C57BL6 mice ex vivo were attenuated by N(omega)-nitro-L-arginine methyl ester (L-NAME), GA, and RAD. Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate), a slow releasing NO. donor, increased vasodilation of arterioles pretreated with GA, RAD, and L-NAME equally well except at 10(-5) M, the highest concentration used, where vasodilation was greater in pressurized arterioles treated with L-NAME than in arterioles pretreated with GA or RAD alone. Both GA and RAD reduced NO* release from stimulated endothelial cell cultures and increased O(2)(-*) production in the endothelium of isolated aortas by an L-NAME-inhibitable mechanism. Pretreatment with RAD increased stimulated O(2)(-*) production from eNOS, whereas pretreatment with genistein (GE), a broad-spectrum tyrosine kinase inhibitor, did not; however, pretreatment with GE + RAD resulted in a super-induced state of uncoupled eNOS activity upon stimulation. These data suggest that the tyrosine kinases, either directly or indirectly, and HSP90-dependent signaling pathways act in concert to suppress uncoupled eNOS activity.  相似文献   
116.
Bengough  A.G.  Gordon  D.C.  Al-Menaie  H.  Ellis  R.P.  Allan  D.  Keith  R.  Thomas  W.T.B.  Forster  B.P. 《Plant and Soil》2004,262(1-2):63-70
A simple gel chamber is described for measurement of seedling root traits. Seedlings are located between two closely spaced flat layers of transparent gel, on plastic plates (at least one of which is transparent). Root system traits can be non-destructively recorded in two-dimensions using a flatbed scanner. Easily measured rooting traits include root length, elongation rate, longest root, deepest root, seminal root number, and angular spread of roots. Examples of wild, landrace, and cultivated barleys were grown in the gel chambers, between gel layers or in loosely packed soil. Root growth on the gel plates was similar to that in loose soil, with the cultivated barley having the most seminal axes (about 7), and widest angular spread of roots (about 120 °), and wild barley the fewest seminal axes (about 3), and narrowest angular spread of roots (about 40 °). Landrace barley lines tested were intermediate between wild barley and modern cultivars. Separate experiments were performed to study the effect of grain mass and grain size on these rooting traits. These experiments included parents of genetic mapping populations. Seminal root number was most strongly dependent on grain mass in the modern cultivar Chime. Grain size significantly influenced root number in the modern cultivar Derkado, the breeding line B83-12/21/5, and a selection from a landrace Tadmor, suggesting that grain size should be controlled in any screening exercise.  相似文献   
117.
The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin‐based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB‐mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial‐induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin‐based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell‐to‐cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N‐WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42‐GTP or Tuba/N‐WASP interaction.  相似文献   
118.
The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C′/D′ RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C′/D′ RNP despite its inability to bind the K-loop, thus indicating the importance of protein–protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.  相似文献   
119.

Background

Both HIV and TB cause a state of heightened immune activation. Immune activation in HIV is associated with progression to AIDS. Prior studies, focusing on persons with advanced HIV, have shown no decline in markers of cellular activation in response to TB therapy alone.

Methodology

This prospective cohort study, composed of participants within a larger phase 3 open-label randomized controlled clinical trial, measured the impact of TB treatment on immune activation in persons with non-advanced HIV infection (CD4>350 cells/mm3) and pulmonary TB. HIV load, CD4 count, and markers of immune activation (CD38 and HLA-DR on CD4 and CD8 T cells) were measured prior to starting, during, and for 6 months after completion of standard 6 month anti-tuberculosis (TB) therapy in 38 HIV infected Ugandans with smear and culture confirmed pulmonary TB.

Results

Expression of CD38, and co-expression of CD38 and HLA-DR, on CD8 cells declined significantly within 3 months of starting standard TB therapy in the absence of anti-retroviral therapy, and remained suppressed for 6 months after completion of therapy. In contrast, HIV load and CD4 count remained unchanged throughout the study period.

Conclusion

TB therapy leads to measurable decreases in immune activation in persons with HIV/TB co-infection and CD4 counts >350 cells/mm3.  相似文献   
120.
Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m?2 and 245 g N m?2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above‐ and below‐ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long‐term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures <20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long‐term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest‐derived C and its replacement by pasture‐derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号