首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7984篇
  免费   780篇
  国内免费   6篇
  2021年   79篇
  2020年   55篇
  2019年   83篇
  2018年   98篇
  2017年   100篇
  2016年   155篇
  2015年   282篇
  2014年   291篇
  2013年   401篇
  2012年   550篇
  2011年   512篇
  2010年   322篇
  2009年   318篇
  2008年   504篇
  2007年   515篇
  2006年   464篇
  2005年   477篇
  2004年   455篇
  2003年   436篇
  2002年   352篇
  2001年   87篇
  2000年   75篇
  1999年   89篇
  1998年   109篇
  1997年   92篇
  1996年   91篇
  1995年   75篇
  1994年   59篇
  1993年   69篇
  1992年   78篇
  1991年   59篇
  1990年   66篇
  1989年   72篇
  1988年   65篇
  1987年   62篇
  1986年   51篇
  1985年   58篇
  1984年   65篇
  1983年   64篇
  1982年   64篇
  1981年   59篇
  1980年   67篇
  1979年   57篇
  1978年   42篇
  1977年   37篇
  1976年   42篇
  1975年   40篇
  1974年   59篇
  1973年   44篇
  1972年   36篇
排序方式: 共有8770条查询结果,搜索用时 15 毫秒
71.
Summary Using immunocytochemical techniques, we report here direct evidence of kynurenine (Kyn) presence and localization in the lung and brain. Kyn is a metabolite of tryptophan and 5-hydroxytryptophan, produced by indoleamine 2, 3-dioxygenase (IDO). Whereas IDO has been quantitated in tissues from lung, brain, and other organs, Kyn has only been identified in brain (by HPLC), and its specific localization has not been determined.We reacted alternate serial paraffin sections with anti-sera raised in rabbits against a l-Kyn-albumin conjugate, and with anti-5HT (serotonin, 5-hydroxytryptamine), using the PAP method. Kyn-like immunoreactivity in the lung was specifically localized to cells of the bronchiolar epithelium resembling basal cells. Taller epithelial cells in the bronchi and dorsal trachea were likewise positive whereas neuroepithelial bodies were negative. Immunoreactivity in the brain was typically localized to cells localized in the ependyma of the walls of all ventricles, and to nerve fibers. The cellular Kyn-like reactivity was totally separate from that of anti-5HT, the latter uniquely staining argyrophil lung neuroendocrine cells and raphae neurons of the brain. Our findings suggest a route of tryptophan metabolism in the lung and brain alternate to the common pathway leading to 5-hydroxyindoleacetic acid via 5-HT. This route is of physiologic and pathologic significance as many metabolites are pharmacologically active.Supported by the College of Agriculture and Life Sciences, University of Wisconsin-Madison and the Council for Tobacco Research USA, Inc. Grant #1437  相似文献   
72.
73.
Summary Plants often respond to microbial infection by producing antimicrobial compounds called phytoalexins. Plants also produce phytoalexins in response to in vitro treatment with molecules called elicitors. Specific elicitors, including a hexa--glucosyl glucitol derived from fungal cell walls, the pectin-degrading enzyme endopolygalacturonic acid lyase, and oligogalacturonides obtained by either partial acid hydrolysis or enzymatic degradation of plant cell walls or citrus polygalacturonic acid, induce soybean (Glycine max. L.) cytoledons to accumulate phytoalexins. The experiments reported here demonstrate that the elicitor-active hexa--glucosyl glucitol acts synergistically with several biotic and abiotic elicitors in the induction of phytoalexins in soybean cotyledons. At concentrations below 50 ng/ml, the hexa--glucosyl glucitol does not induce significant phytoalexin accumulation. When assayed in combination with either endopolygalacturonic acid lyase or with a decagalacturonide released from citrus polygalacturonic acid by this lyase, however, the observed elicitor activity of the hexa--glucosyl glucitol is as much as 35-fold higher than the sum of the responses of these elicitors assayed separately. A similar synergism was also demonstrated for the combination of the hexa--glucosyl glucitol with dilute solutions of sodium acetate, sodium formate, or sodium propionate buffers. These buffers are thought to damage or kill plant cells, which may cause the release of oligogalacturonides from the plant cell wall. The results suggest that oligogalacturonides act as signals of tissue damage and, as such, can enhance the response of plant tissues to other elicitor-active molecules during the initiation of phytoalexin accumulation.Supported by the United States Department of Energy DE-ACO2-84ER13161. This paper is number XXXI in a series, Host-Pathogen Interactions. The preceding paper, Host-Pathogen Interactions XXX is Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cells by endopolygalacturonic acid lyase, by K. R. Davis, A. G. Darvill, P. Albersheim, and A. Dell. Zeitschrift für Naturforsschung, in press.  相似文献   
74.
The selective monoamine oxidase inhibitors clorgyline and (−)-deprenyl were used to study the distribution of monoamine oxidase-A and -B (MAO-A, MAO-B) activities towards (−)-noradrenaline and (+),(−)-adrenaline in homogenates from seven different regions of human brain. The activities towards 5-hydroxytryptamine and 2-phenethylamine, which are essentially specific substrates for the A- and B-forms, respectively, under the conditions used in this work, were also determined. Noradreanline and adrenaline were substrates for both forms of the enzyme in all regions studied. The total MAO activity was found to be highest in the hypothalamus and lowest in the cerebellar cortex. Use of the selective MAO inhibitors clorgyline and (−)-deprenyl also showed adrenaline and noradrenaline to be substrates for both forms of the enzyme in rat brain. In human cerebral cortex and rat brain the two forms were found to have similar Km-values and maximum velocities towards adrenaline. These values for the two forms were also found to be similar in human cerebral cortex when noradrenaline was used as the substrate. In contrast MAO-A showed a significantly lower Km and a higher maximum velocity towards noradrenaline in rat brain. These results suggest that the rat may not provide a close model of the human for studies on the effects of MAO inhibitors on brain noradrenaline metabolism.  相似文献   
75.
The lysosomal enzyme binding protein (receptor protein) isolated from monkey brain was immobilised on Sepharose 4B and used to study the binding of brain lysosomal enzymes. The immobilised protein could bind \-D-glucosaminidase, α-D-mannosidase, α-L-fucosidase and2-D-glucuronidase. The bound enzymes could be eluted either at an acid pH of 4.5 or by mannose 6-phosphate but not by a number of other sugars tested. Binding could be abolished by prior treatment of the lysosomal enzymes with sodium periodate. Alkaline phosphatase treatment of the enzymes did not prevent the binding of the lysosomal enzymes to the column but decreased their affinity, as seen by a shift in their elution profile, when a gradient elution with mannose 6-phosphate was employed. These results suggested that an ‘uncovered’ phosphate on the carbohydrate moiety of the enzymes was not essential for binding but can enhance the binding affinity.  相似文献   
76.
Besides its major role in protein synthesis, wheat germ arginyl-tRNAArg can serve as an amino acid donor in an enzymatic reaction to bovine serum albumin catalysed by the enzyme arginyl-tRNAArg: protein transferase. The nucleotide sequence of the tRNAArg involved in this reaction was determined to be: pG-A-C-U-C-C-G-U-m1G-m2G-C-C-C-A-A-D-Gm-G-A-X-A-A-G-G-C-m2(2) G-C-U-G-G-U-Cm-U-I-C-G-m2A-A-A-C-C-A-G-A-G-A-D-U-m5C-U-G-G-G-T-psi -C-G-m1 A-U-C-C-C-C-A-G-C-G-G-A-G-U-C-G-C-C-AOH. We suggest that the decapentanucleotide 5'-G-U-Pu-m2G-C-N-C-A-A-D-Gm-G-A-X-A-3', localized in the D-region, interacts specifically with the protein transferase.  相似文献   
77.
Crystals of ribosomal protein L6 from Bacillus stearothermophilus suitable for high resolution structural studies have been obtained. Crystals are hexagonal with space group P6122 (or the enantiomorph P6522) and cell dimensions a = b = 72.7 Å, c = 124.9 Å. A search for heavy atom derivatives is in progress.  相似文献   
78.
The pathways of assimilation of ammonium by pure cultures of symbiont-free Anthoceros punctatus L. and the reconstituted Anthoceros-Nostoc symbiotic association were determined from time-course (5–300 s) and inhibitor experiments using 13NH 4 + . The major product of assimilation after all incubation times was glutamine, whether the tissues were cultured with excess ammonium or no combined nitrogen. The 13N in glutamine was predominantly in the amide-nitrogen position. Formation of glutamine and glutamate by Anthoceros-Nostoc was strongly inhibited by either 1mM methionine sulfoximine (MSX) or 1 mM exogenous ammonium. These data are consistent with the assimilation of 13NH 4 + and formation of glutamate by the glutamine synthetase (EC 6.3.1.2)-glutamate synthase (EC 1.4.7.1) pathway in dinitrogen-grown Anthoceros-Nostoc. However, in symbiont-free Anthoceros, grown with 2.5 mM ammonium, formation of glutamine, but not glutamate, was decreased by either MSX or exogenous ammonium. These results indicate that during short incubation times ammonium is assimilated in nitrogenreplete Anthoceros by the activities of both glutamine synthetase and glutamate dehydrogenase (EC 1.4.1.2). In-vitro activities of glutamine synthetase were similar in nitrogen-replete Anthoceros and Anthoceros-Nostoc, indicating that the differences in the routes of glutamate formation were not based upon regulation of synthesis of the initial enzyme of the glutamine synthetase-glutamate synthase pathway. When symbiont-free Anthoceros was cultured for 2 d in the absence of combined nitrogen, total 13NH 4 + assimilation, and glutamine and glutamate formation in the presence of inhibitors, were similar to dinitrogen-grown Anthoceros-Nostoc. The routes of immediate (within 2 min) glutamate formation and ammonium assimilation in Anthoceros were apparently determined by the intracellular levels of ammonium; at low levels the glutamine synthetase-glutamate synthase pathway was predominant, while at high levels independent activities of both glutamine synthetase and glutamate dehydrogenase were expressed.  相似文献   
79.
Summary The major membrane protein of the bovine lens fiber cell is a 26-kilodalton (kD) protein (MP26), which appears to be a component of the extensive junctional specializations found in these cells. To examine the arrangement of MP26 within the junctional membranes, various proteases were incubated with fiber cell membranes that had been isolated with or without urea and/or detergents. These membranes were analyzed with electron microscopy and SDS-PAGE to determine whether the junctional specializations or the proteins were altered by proteolysis. Microscopy revealed no obvious structural changes. Electrophoresis showed that chymotrypsin, papain, and trypsin degraded MP26 to 21–22 kD species. A variety of protease treatments, including overnight digestions, failed to generate additional proteolysis. Regions on MP26 which were sensitive to these three proteases overlapped. Smaller peptides were cleaved from MP26 with V8 protease and carboxypptidases A and B. Protein domains cleaved by these proteases also overlapped with regions sensitive to chymotrypsin, papain, and trypsin. Specific inhibition of the carboxypeptidases suggested that cleavage obtained with these preparations was not likely due to contaminating endoproteases. Since antibodies are not thought to readily penetrate the 2–3 nm extracellular gap in the fiber cell junctions, antibodies to MP26 were used to analyze the location of the protease-sensitive domains. Antisera were applied to control (26 kD) and proteolyzed (22 kD) membranes, with binding being evaluated by means of ELISA reactions on intact membranes. Antibody labeling was also done following SDS-PAGE and transfer to derivatized paper. Both assays showed a significant decrease in binding following proteolysis, with the 22 kD product showing no reaction with the anti-MP26 sera. These investigations suggest that MP26 is arranged with approximately fourfifths of the primary sequence “protected” by the lipid bilayer and the narrow extracellular gap. One-fifth of the molecule, including the C-terminus, appears to be exposed on the cytoplasmic side of the membrane.  相似文献   
80.
Avian erythroblastosis virus causes erythroid leukemia and sarcomas in chickens. The viral oncogene responsible for these diseases, erb, is divided into two regions known as erbA and erbB, and recent evidence suggests that it is the erbB gene that is responsible for the transforming activity. From rats bearing avian erythroblastosis virus-induced sarcomas, we have obtained antisera which are specific for the erb gene products. Using such antisera, we have been able to characterize the erbB gene product as a 68,000 molecular weight protein. Pulse-chase and cell-free in vitro translation experiments show that the initial product is a 62,500 dalton protein which is initially modified to a 66,000 dalton protein, and then further modified to a 68,000 dalton form. These modifications could be shown to be associated with glycosylation and phosphorylation. Cell fractionation experiments revealed that the 66,000 and 68,000 dalton proteins were located in cell membrane fractions, and immunofluorescence results showed the erbB gene product to be expressed on the cell surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号