首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7867篇
  免费   768篇
  国内免费   6篇
  8641篇
  2022年   46篇
  2021年   78篇
  2020年   55篇
  2019年   82篇
  2018年   97篇
  2017年   99篇
  2016年   153篇
  2015年   282篇
  2014年   287篇
  2013年   396篇
  2012年   538篇
  2011年   506篇
  2010年   320篇
  2009年   316篇
  2008年   502篇
  2007年   513篇
  2006年   460篇
  2005年   475篇
  2004年   452篇
  2003年   431篇
  2002年   350篇
  2001年   83篇
  2000年   72篇
  1999年   86篇
  1998年   108篇
  1997年   88篇
  1996年   86篇
  1995年   74篇
  1994年   57篇
  1993年   69篇
  1992年   75篇
  1991年   58篇
  1990年   60篇
  1989年   67篇
  1988年   64篇
  1987年   54篇
  1986年   46篇
  1985年   56篇
  1984年   63篇
  1983年   59篇
  1982年   64篇
  1981年   56篇
  1980年   62篇
  1979年   57篇
  1978年   42篇
  1977年   36篇
  1976年   40篇
  1975年   37篇
  1974年   56篇
  1973年   43篇
排序方式: 共有8641条查询结果,搜索用时 9 毫秒
911.
Most frog species show little resistance to evaporative water loss (EWL), but some arboreal species are known to have very high resistances. We measured EWL and cutaneous resistance to evaporation (Rc) in 25 species of frogs from northern Australia, including 17 species in the family Hylidae, six species in the Myobatrachidae, and one each in the Bufonidae and the Microhylidae. These species display a variety of ecological habits, including aquatic, terrestrial, and arboreal specialisations, with the complete range of habits displayed within just the one hylid genus, Litoria. The 25 species measured in this study have resistances that range from Rc=0 to 63.1. These include low values indistinguishable from a free water surface to high values typical of "waterproof" anuran species. There was a strong correlation between ecological habit and Rc, even taking phylogenetic relationships into account; arboreal species had the highest resistance, aquatic species tended to have little or no resistance, and terrestrial species tended to have resistance between those of arboreal and aquatic frogs. For one species, Litoria rubella, we found no significant changes in EWL along a 1,500-km aridity gradient. This study represents the strongest evidence to date of a link between ecological habits and cutaneous resistance to water loss among species of frogs.  相似文献   
912.
Cilia and flagella are central to many biological processes in a diverse range of organisms. The kinetoplastid protozoa are very appealing models for the study of flagellar function, particularly in the light of the availability of extensive trypanosomatid genome information. In addition to the highly conserved 9 + 2 axoneme, the kinetoplastid flagellum contains a characteristic paraflagellar rod structure (PFR). The PFR is necessary for full motility and provides support for metabolic regulators that may influence flagellar beating. However, there is an intriguing puzzle: one clade of endosymbiont-containing kinetoplastids apparently lack a PFR yet are as motile as species that possess a PFR and are able to attach to the invertebrate host epithelia. We investigated how these organisms are able to locomote despite the apparent lack of PFR. Here we have identified a PFR1 gene in the endosymbiont-bearing trypanosome Crithidia deanei. This gene is expressed in C. deanei and is able to partially complement a pfr1 null mutation in Leishmania mexicana cells, demonstrating that the encoded protein is functional. Careful reexamination of C. deanei flagellar ultrastructure revealed a greatly reduced PFR missed by many previous analyses. This affirms the PFR as a canonical organelle of kinetoplastids. Moreover, although PFR proteins have been conserved in evolution, primary sequence differences contribute to particular PFR morphotypes characteristic of different kinetoplastid species.  相似文献   
913.
Combining results from gene microarrays, clinical chemistry, and quantitative tissue histomorphology in an integrated bioinformatics setting enables prioritization of gene families as well as individual genes in a type II diabetes animal study. This new methodology takes advantage of a time-controlled mouse study as the animals progress from a normal phenotype to that of type II diabetes. Profiles from different levels of the biological hierarchy of unpooled entities provide an encompassing, system-wide view of biological changes. Here, phenotypic changes on the tissue-structural and physiological level are used as statistical covariants to enrich the gene expression analysis, suggesting correlative processes between gene expression and phenotype unlocked by multi-sample comparisons. We apply correlative and gene set enrichment procedures and compare the results to differential analysis to identify molecular markers. Evaluation based on ontological classifications proves changes in prioritization of disease-related genes that would have been overlooked by conventional gene expression analyses strategies.  相似文献   
914.
A new yeast poly(A) polymerase complex involved in RNA quality control   总被引:2,自引:0,他引:2  
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.  相似文献   
915.
Human microsomal cytochrome P450 2A6 (CYP2A6) contributes extensively to nicotine detoxication but also activates tobacco-specific procarcinogens to mutagenic products. The CYP2A6 structure shows a compact, hydrophobic active site with one hydrogen bond donor, Asn297, that orients coumarin for regioselective oxidation. The inhibitor methoxsalen effectively fills the active site cavity without substantially perturbing the structure. The structure should aid the design of inhibitors to reduce smoking and tobacco-related cancers.  相似文献   
916.
DNA microarray analysis of Clostridium acetobutylicum was used to examine the genomic-scale gene expression changes during the shift from exponential-phase growth and acidogenesis to stationary phase and solventogenesis. Self-organizing maps were used to identify novel expression patterns of functional gene classes, including aromatic and branched-chain amino acid synthesis, ribosomal proteins, cobalt and iron transporters, cobalamin biosynthesis, and lipid biosynthesis. The majority of pSOL1 megaplasmid genes (in addition to the solventogenic genes aad-ctfA-ctfB and adc) had increased expression at the onset of solventogenesis, suggesting that other megaplasmid genes may play a role in stationary-phase phenomena. Analysis of sporulation genes and comparison with published Bacillus subtilis results indicated conserved expression patterns of early sporulation genes, including spo0A, the sigF operon, and putative canonical genes of the sigma(H) and sigma(F) regulons. However, sigE expression could not be detected within 7.5 h of initial spo0A expression, consistent with the observed extended time between the appearance of clostridial forms and endospore formation. The results were compared with microarray comparisons of the wild-type strain and the nonsolventogenic, asporogenous M5 strain, which lacks the pSOL1 megaplasmid. While some results were similar, the expression of primary metabolism genes and heat shock proteins was higher in M5, suggesting a difference in metabolic regulation or a butyrate stress response in M5. The results of this microarray platform and analysis were further validated by comparing gene expression patterns to previously published Northern analyses, reporter assays, and two-dimensional protein electrophoresis data of metabolic genes (including all major solventogenesis genes), sporulation genes, heat shock proteins, and other solventogenesis-induced gene expression.  相似文献   
917.
In Streptomyces coelicolor ParB is required for accurate chromosome partitioning during sporulation. Using a functional ParB-enhanced green fluorescent protein fusion, we observed bright tip-associated foci and other weaker, irregular foci in S. coelicolor vegetative hyphae. In contrast, in aerial hyphae regularly spaced bright foci accompanied sporulation-associated chromosome condensation and septation.  相似文献   
918.
The fifth domain (DV) of beta2-glycoprotein I (beta2GPI) is important for binding a number of ligands including phospholipids and factor XI (FXI). Beta2GPI is proteolytically cleaved in DV by plasmin but not by thrombin, VIIa, tissue plasminogen activator, or uPA. Following proteolytic cleavage of DV by plasmin, beta2GPI retains binding to FXI but not to phospholipids. Native beta2GPI, but not cleaved beta2GPI, inhibits activation of FXI by thrombin and factor XIIa, attenuating a positive feedback mechanism for additional thrombin generation. In this report, we have defined the FXI/FXIa binding site on beta2GPI using site-directed mutagenesis. We show that the positively charged residues Lys284, Lys286, and Lys287 in DV are essential for the interaction of beta2GPI with FXI/FXIa. We also demonstrate that FXIa proteolytically cleaves beta2GPI at Lys317-Thr318 in DV. Thus, FXIa cleavage of beta2GPI in vivo during thrombus formation may accelerate FXI activation by decreasing the inhibitory effect of beta2GPI.  相似文献   
919.
Akt, also known as protein kinase B, is a serine/threonine protein kinase with antiapoptotic activities; also, it is a downstream target of phosphatidylinositol 3-kinase. Here we show that Akt1/Akt2 play a critical role in osteoclast differentiation but not cell survival and that mammalian target of rapamycin (mTOR) and Bim, a pro-apoptotic Bcl-2 family member, are required for cell survival in isolated osteoclast precursors. To investigate the function of Akt1, Akt2, mTOR, and Bim, we employed a retroviral system for delivery of small interfering RNA into cells. Loss of Akt1 and/or Akt2 protein inhibited osteoclast differentiation due to down-regulation of IkappaB-kinase (IKK) alpha/beta activity, phosphorylation of IkappaB-alpha, nuclear translocation of nuclear factor-kappaB (NFkappaB) p50, and NFkappaB p50 DNA-binding activity. Surprisingly, deletion of Akt1 and/or Akt2 protein did not stimulate cleaved caspase-3 activity and failed to promote apoptosis. Conversely, loss of mTOR protein induced apoptosis due to up-regulation of cleaved caspase-3 activity. In addition, we found that mTOR is downstream of phosphatidylinositol 3-kinase (but not Akt) and that macrophage colony-stimulating factor regulates Bim expression through mTOR activation for cell survival. These results demonstrate that Akt1/Akt2 are key elements in osteoclast differentiation and that the macrophage colony-stimulating factor stimulation of mTOR leading to Bim inhibition is essential for cell survival in isolated osteoclast precursors.  相似文献   
920.
Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of gamma-phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号