全文获取类型
收费全文 | 8250篇 |
免费 | 833篇 |
国内免费 | 6篇 |
专业分类
9089篇 |
出版年
2022年 | 50篇 |
2021年 | 81篇 |
2020年 | 58篇 |
2019年 | 85篇 |
2018年 | 105篇 |
2017年 | 100篇 |
2016年 | 159篇 |
2015年 | 290篇 |
2014年 | 301篇 |
2013年 | 416篇 |
2012年 | 559篇 |
2011年 | 531篇 |
2010年 | 335篇 |
2009年 | 321篇 |
2008年 | 521篇 |
2007年 | 525篇 |
2006年 | 465篇 |
2005年 | 484篇 |
2004年 | 463篇 |
2003年 | 448篇 |
2002年 | 371篇 |
2001年 | 97篇 |
2000年 | 82篇 |
1999年 | 91篇 |
1998年 | 111篇 |
1997年 | 90篇 |
1996年 | 91篇 |
1995年 | 78篇 |
1994年 | 59篇 |
1993年 | 73篇 |
1992年 | 83篇 |
1991年 | 72篇 |
1990年 | 73篇 |
1989年 | 77篇 |
1988年 | 73篇 |
1987年 | 59篇 |
1986年 | 57篇 |
1985年 | 64篇 |
1984年 | 66篇 |
1983年 | 61篇 |
1982年 | 65篇 |
1981年 | 61篇 |
1980年 | 63篇 |
1979年 | 58篇 |
1978年 | 45篇 |
1977年 | 38篇 |
1976年 | 41篇 |
1975年 | 45篇 |
1974年 | 59篇 |
1973年 | 48篇 |
排序方式: 共有9089条查询结果,搜索用时 15 毫秒
61.
Ginger ML Ngazoa ES Pereira CA Pullen TJ Kabiri M Becker K Gull K Steverding D 《The Journal of biological chemistry》2005,280(12):11781-11789
Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of gamma-phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates. 相似文献
62.
63.
We systematically identify a group of evolutionarily conserved residues proposed for folding in a model beta-barrel superfamily, the lipocalins. The nature of conservation at the structural level is defined and we show that the conserved residues are involved in a network of interactions that form the core of the fold. Exploratory kinetic studies are conducted with a model superfamily member, human serum retinol-binding protein, to examine their role. The present results, coupled with key experimental studies conducted with another lipocalin beta-lactoglobulin, suggest that the evolutionarily conserved regions fold on a faster folding time-scale than the non-conserved regions. 相似文献
64.
Harrison-Lavoie KJ Michaux G Hewlett L Kaur J Hannah MJ Lui-Roberts WW Norman KE Cutler DF 《Traffic (Copenhagen, Denmark)》2006,7(6):647-662
The biogenesis of endothelial-specific Weibel-Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3-dependent (AP-3-dependent), and AP-3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P-selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP-3, which operates in post-Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P-selectin is recruited to forming WPB in the trans-Golgi by AP-3-independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already-budded WPB by an AP-3-dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC). 相似文献
65.
Activated hepatic stellate cells (HSCs) are the major source for alteration of extracellular matrix in fibrosis and cirrhosis. Conditioned medium (CM) collected from immortalized human hepatocytes (IHH) have earlier been shown to be responsible for apoptosis of HSCs. In this study, we have shown that antibodies raised against a peptide derived from a linear B-cell epitope in the N-terminal region of gelsolin identified a gelsolin fragment in IHH CM. Analysis of activated stellate cell death by CM collected from Huh7 cells transfected with plasmids encoding gelsolin deletion mutants suggested that the N-terminal half of gelsolin contained sequences which were responsible for stellate cell death. Further analysis determined that this activity was restricted to a region encompassing amino acids 1-70 in the gelsolin sequence; antibody directed to an epitope within this region was able to neutralize stellate cell death. Gelsolin modulation of cell death using this fragment involved upregulation of TRAIL-R1 and TRAIL-R2, and involved caspase 3 activation by extrinsic pathway. The apoptotic activity of N-terminal gelsolin fragments was restricted to activated but not quiescent stellate cells indicating its potential application in therapeutic use as an anti-fibrotic agent. Gelsolin fragments encompassing N-terminal regions in polypeptides of different molecular sizes were detected by N-terminal peptide specific antiserum in IHH CM immunoprecipitated with chronically HCV infected patient sera, suggesting the presence of autoantibodies generated against N-terminal gelsolin fragments in patients with chronic liver disease. 相似文献
66.
Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar), potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation. 相似文献
67.
Hepatitis C virus (HCV) often causes a persistent infection associated with hypergammaglobulinemia, high levels of antiviral antibody and circulating immune complexes, and immune complex disease. We previously reported that only a limited neutralizing activity to vesicular stomatitis virus or HCV pseudotype is generated in animals immunized with recombinant HCV envelope proteins and chronically infected HCV patient sera. Interestingly, when some of these neutralizing sera were diluted into a range of concentrations below those that reduced virus plaque number, an increase in pseudotype plaque formation was observed. Purified HCV E2-specific human monoclonal antibodies were used to further verify the specificity of this enhancement, and one- to twofold increases were apparent on permissive Huh-7 cells. The enhancement of HCV pseudotype titer could be inhibited by the addition of a Fc-specific anti-human immunoglobulin G Fab fragment to the virus-antibody mixture prior to infection. Treatment of cells with antibody to Fc receptor I (FcRI) or FcRII, but not FcRIII, also led to an inhibition of pseudotype titer enhancement in an additive manner. Human lymphoblastoid cell line (Raji), a poor host for HCV pseudotype infection, exhibited a four- to sixfold enhancement of pseudotype-mediated cell death upon incubation with antibody at nonneutralizing concentrations. A similar enhancement of cell culture-grown HCV infectivity by a human monoclonal antibody was also observed. Taken together, antibodies to viral epitopes enhancing HCV infection need to be taken into consideration for pathogenesis and in the development of an effective vaccine. 相似文献
68.
Limitations to agricultural productivity imposed by the root-zone constraints in Australian dryland soils are severe and need redemption to improve the yields of grain crops and thereby meet world demand. Physical, chemical and biological constraints in soil horizons impose a stress on the plant and restrict plant growth and development. Hardsetting, crusting, compaction, salinity, sodicity, acidity, alkalinity, nutrient deficiencies and toxicities due to boron, carbonates and aluminium are the major factors that cause these constraints. Further, subsoils in agricultural regions in Australia have very low organic matter and biological activity. Dryland salinity is currently given wide attention in the public debate and government policies in Australia, but they only focus on salinity induced by shallow groundwater. However, the occurrence of transient salinity in root-zone layers in the regions where water tables are deep is an important issue with potential for larger economic loss than water table-induced seepage salinity. Root-zone constraints pose a challenge for salinity mitigation in recharge as well as discharge zones. In recharge zones, reduced water movement in sodic horizons results in salt accumulation in the root zone resulting in chemical and physical constraints that reduce transpiration that, in turn, upsets salt balance and plant growth. High salinity in soil and groundwater restricts the ability of plants to reduce water table in discharge zones. Thus plant-based strategies must address different kinds of limitations in soil profiles, both in recharge and discharge zones. In this paper we give an overview of plant response to root-zone constraints but with an emphasis on the processes of salt accumulation in the root-zone of soils. We also examine physical and chemical methods to overcome subsoil limitations, the ability of plants to adapt to and ameliorate these constraints, soil modification by management of agricultural and forestry ecosystems, the use of biological activity, and plant breeding for resistance to the soil constraints. We emphasise that soil scientists in cooperation with agronomists and plant breeders should design site-specific strategies to overcome multiple soil constraints, with vertical and lateral variations, and to develop plant-based solutions for dryland salinity. 相似文献
69.
The developmental capacity of sheep oocytes cultured outside the follicle was greatly increased by the presence of high concentrations of gonadotrophins (10 micrograms/ml) in the medium. However, even under these conditions, the developmental capacity of the oocytes was only half that of oocytes cultured within the intact follicle. The presence of the cumulus was essential for development; nearly all denuded oocytes failed to undergo cleavage. Maturational changes in the oocyte involving increased amino acid uptake increased incorporation and specific changes in protein synthesis were inhibited by the follicle cells; this suppression was alleviated by gonadotrophic hormones. The cumulus cells suppressed amino acid incorporation and, to some extent, the changes in protein synthesis. However, the suppression of amino acid uptake required the presence of the whole follicle. Patterns of protein synthesis by oocytes cultured outside the follicle differed from those in oocytes cultured within the follicle, irrespective of the presence of the cumulus or gonadotrophins. Analysis of single oocytes cultured outside the follicle showed that the protein profiles varied markedly even under identical culture conditions. 相似文献
70.
Primary reactions of the LOV2 domain of phototropin,a plant blue-light photoreceptor 总被引:4,自引:0,他引:4
Kennis JT Crosson S Gauden M van Stokkum IH Moffat K van Grondelle R 《Biochemistry》2003,42(12):3385-3392
The phototropins constitute an important class of plant photoreceptor kinases that control a range of physiological responses, including phototropism, light-directed chloroplast movement, and light-induced stomatal opening. The LOV2 domain of phototropin binds a molecule of flavin mononucleotide (FMN) and undergoes a photocycle involving light-driven covalent adduct formation between a conserved cysteine residue and the C(4a) atom of FMN. This product state promotes C-terminal kinase activation and downstream signal transduction. Here, we report the primary photophysics and photochemistry of LOV2 domains of phototropin 1 of Avena sativa (oat) and of the phy3 photoreceptor of Adiantum capillus-veneris (maidenhair fern). In agreement with earlier reports [Swartz, T. E., et al. (2001) J. Biol. Chem. 276, 36493-36500], we find that the FMN triplet state is the reactive species from which the photoreaction occurs. We demonstrate that the triplet state is the primary photoproduct in the LOV2 photocycle, generated at 60% efficiency. No spectroscopically distinguishable intermediates precede the FMN triplet on the femtosecond to nanosecond time scale, indicating that it is formed directly via intersystem crossing (ISC) from the singlet state. Our results indicate that the majority of the FMN triplets in the LOV2 domain exist in the protonated form. We propose a reaction mechanism that involves excited-state proton transfer, on the nanosecond time scale or faster, from the sulfhydryl group of the conserved cysteine to the N5 atom of FMN. This event promotes adduct formation by increasing the electrophilicity of C(4a) and subsequent nucleophilic attack by the cysteine's thiolate anion. Comparison to free FMN in solution shows that the protein environment of LOV2 increases the ISC rate of FMN by a factor of 2.4, thus improving the yield of the cysteinyl-flavin adduct and the efficiency of phototropin-mediated signaling processes. 相似文献