Phosphorus (P) acquisition through extensive root growth and P allocation to different plant organs through efficient remobilization are important for acclimation of crop plants to P-limited environments. This study elucidated changes in rice root growth and leaf P-remobilization and their influence on grain yield under P deficiency.
Methods
Two pot experiments were conducted with (P100) and without (P0) inorganic P supply using two Japanese rice cultivars: Akamai (Yamagata) and Koshihikari. Multiple harvests were made until the panicle initiation stage. Root and shoot growth response, P acquisition, and temporal leaf P-remobilization efficiency were measured. A separate experiment ascertained the final yield and grain P status.
Results
The Akamai rice cultivar showed enhanced root growth and more acquired soil P. The Akamai root dry weight was 66% greater than that of Koshihikari under P0. Confronting P deficiency, Akamai remobilized some P from its lower mature leaves to upper younger leaves starting from early growth. The remobilized P fraction increased to 72% at panicle initiation under P0. Under P0, Akamai exhibited two-fold higher leaf P-remobilization efficiency than under P100.
Conclusions
Enhanced root growth that facilitates acquisition of more soil P through better soil exploration coupled with efficient leaf P remobilization from the early growth stage improves adaptation of Akamai rice cultivar to P-limited environments. Nevertheless, P-starvation responses did not facilitate higher grain yields in P-limited conditions.
The purpose of this study was to examine whether stretching training altered the viscoelastic properties of human tendon structures in vivo. Eight men performed the stretching training for 3 wk. Before and after the stretching training, the elongation of the tendon and aponeurosis of medial gastrocnemius muscle was directly measured by ultrasonography while the subjects performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between the estimated muscle force (Fm) and tendon elongation (L) during the ascending phase was fitted to a linear regression, the slope of which was defined as stiffness of tendon structures. The percentage of the area within the Fm-L loop to the area beneath the curve during ascending phase was calculated as an index representing hysteresis. To assess the flexibility, the passive torque of the plantar flexor muscles was measured during the passive stretch from 0 degrees (anatomic position) to 25 degrees of dorsiflexion with a constant velocity of 5 degrees/s. The slope of the linear portion of the passive torque-angle curve during stretching was defined as flexibility index. Flexibility index decreased significantly after stretching training (-13.4 +/- 4.6%). On the other hand, the stretching training produced no significant change in stiffness but significantly decreased hysteresis from 19.9 +/- 11.7 to 12.5 +/- 9.5%. The present results suggested that stretching training affected the viscosity of tendon structures but not the elasticity. 相似文献
To investigate the impact of microzooplankton grazing on phytoplankton bloom in coastal waters, an enclosure experiment was conducted in Saanich Inlet, Canada during the summer of 1996. Daily changes in the microzooplankton grazing rate on each phytoplankton group were investigated with the growth rates of each phytoplankton group from the beginning toward the end of bloom using the dilution technique with high-performance liquid chromatography (HPLC). On Day 1 when nitrate and iron were artificially added, chlorophyll a concentration was relatively low (4.3 μg l−1) and 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were predominant in the chlorophyll biomass. However, both the synthetic rates and concentrations of 19′-hexanoyloxyfucoxanthin declined before bloom, suggesting that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes weakened. Chlorophyll a concentration peaked at 23 μg l−1 on Day 4 and the bloom consisted of the small chain-forming diatoms Chaetoceros spp. (4 μm in cell diameter). Diatoms were secondary constituents in the chlorophyll biomass at the beginning of the experiment, and the growth rates of diatoms (fucoxanthin) were consistently high (>0.5 d−1) until Day 3. Microzooplankton grazing rates on each phytoplankton group remarkably increased except on alloxanthin-containing cryptophytes after the nutrient enrichments, and peaked with >0.6 d−1 on Day 3, indicating that >45% of the standing stock of each phytoplankton group was removed per day. Both the growth and mortality rates of alloxanthin-containing cryptophytes were relatively high (>1 and >0.5 d−1, respectively) until the bloom, suggesting that a homeostatic mechanism might exist between predators and their prey. Overall, microzooplankton grazing showed a rapid response to the increase in phytoplankton abundance after the nutrient enrichments, and affected the magnitude of the bloom significantly. High grazing activity of microzooplankton contributed to an increase in the abundance of heterotrophic dinoflagellates with 7-24 μm in cell size, the fraction of large-sized (>10 μm) chlorophyll a, and stimulated the growth of larger-sized ciliates after the bloom. 相似文献
Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (FcεRI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophore but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with FcεRI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders. 相似文献
Abstract Coarse tree roots, which are responsible for most root carbon storage, are usually measured by destructive methods such as excavation and coring. Ground penetrating radar (GPR) is a non-destructive tool that could be used to detect coarse roots in forest soils. In this study, we examined whether the roots of Cryptomeria japonica, a major plantation species in Japan, can be detected with GPR. We also looked for factors that impact the analysis and detection of roots. Roots and wooden dowels of C. japonica were buried 30 cm deep in sandy granite soil. From GPR measurements with a 900 MHz antenna, the distribution and diameter of samples in several transects were recorded. The buried roots were detected clearly and could be distinguished at diameters of 1.1–5.2 cm. There were significant positive relationships between root diameter and parameters extracted from the resultant GPR waveform. The difference in water content between roots and soil is a crucial factor impacting the ability to detect roots with GPR. We conclude that GPR can be used as a non-destructive tool, but further investigation is needed to determine optimal conditions (e.g. water content) and analytical methods for using GPR to examine roots in forest sites. 相似文献
HLA-DRB1, especially the shared epitope (SE), is strongly associated with rheumatoid arthritis (RA). However, recent studies have shown that SE is at most weakly associated with RA without anti-citrullinated peptide/protein antibody (ACPA). We have recently reported that ACPA-negative RA is associated with specific HLA-DRB1 alleles and diplotypes. Here, we attempted to detect genetically different subsets of ACPA-negative RA by classifying ACPA-negative RA patients into two groups based on their positivity for rheumatoid factor (RF). HLA-DRB1 genotyping data for totally 954 ACPA-negative RA patients and 2,008 healthy individuals in two independent sets were used. HLA-DRB1 allele and diplotype frequencies were compared among the ACPA-negative RF-positive RA patients, ACPA-negative RF-negative RA patients, and controls in each set. Combined results were also analyzed. A similar analysis was performed in 685 ACPA-positive RA patients classified according to their RF positivity. As a result, HLA-DRB1*04:05 and *09:01 showed strong associations with ACPA-negative RF-positive RA in the combined analysis (p = 8.8×10−6 and 0.0011, OR: 1.57 (1.28–1.91) and 1.37 (1.13–1.65), respectively). We also found that HLA-DR14 and the HLA-DR8 homozygote were associated with ACPA-negative RF-negative RA (p = 0.00022 and 0.00013, OR: 1.52 (1.21–1.89) and 3.08 (1.68–5.64), respectively). These association tendencies were found in each set. On the contrary, we could not detect any significant differences between ACPA-positive RA subsets. As a conclusion, ACPA-negative RA includes two genetically distinct subsets according to RF positivity in Japan, which display different associations with HLA-DRB1. ACPA-negative RF-positive RA is strongly associated with HLA-DRB1*04:05 and *09:01. ACPA-negative RF-negative RA is associated with DR14 and the HLA-DR8 homozygote. 相似文献
During tumorigenesis, cells acquire immortality in association with the
development of genomic instability. However, it is still elusive how genomic
instability spontaneously generates during the process of tumorigenesis. Here,
we show that precancerous DNA lesions induced by oncogene acceleration, which
induce situations identical to the initial stages of cancer development, trigger
tetraploidy/aneuploidy generation in association with mitotic aberration.
Although oncogene acceleration primarily induces DNA replication stress and the
resulting lesions in the S phase, these lesions are carried over into the M
phase and cause cytokinesis failure and genomic instability. Unlike directly
induced DNA double-strand breaks, DNA replication stress-associated lesions are
cryptogenic and pass through cell-cycle checkpoints due to limited and
ineffective activation of checkpoint factors. Furthermore, since damaged M-phase
cells still progress in mitotic steps, these cells result in chromosomal
mis-segregation, cytokinesis failure and the resulting tetraploidy generation.
Thus, our results reveal a process of genomic instability generation triggered
by precancerous DNA replication stress. 相似文献
We have used human β2 and β4 cDNA probes to map the genes encoding two isoforms of the regulatory β subunit of voltage-activated
Ca2+ channels, viz. CACNB2 (β2) and CACNB4 (β4), to human chromosomes 10p12 and 2q22-q23, respectively, by fluorescence in situ
hybridization. The gene encoding the β2 protein, first described as a Lambert-Eaton myasthenic syndrome (LEMS) antigen in
humans, is found close to a region that undergoes chromosome rearrangements in small cell lung cancer, which occurs in association
with LEMS. CACNB2 (β2) and CACNB4 (β4) genes are members of the ion-channel gene superfamily and it should now be possible
to examine their loci by linkage analysis of ion-channel-related disorders. To date, no such disease-related gene has been
assigned to 10p12 and 2q22-q23.
Received: 5 February 1997 / Accepted: 4 April 1997 相似文献