首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2390篇
  免费   170篇
  2560篇
  2023年   8篇
  2022年   23篇
  2021年   42篇
  2020年   20篇
  2019年   32篇
  2018年   54篇
  2017年   41篇
  2016年   65篇
  2015年   82篇
  2014年   107篇
  2013年   164篇
  2012年   165篇
  2011年   174篇
  2010年   108篇
  2009年   88篇
  2008年   154篇
  2007年   161篇
  2006年   136篇
  2005年   132篇
  2004年   125篇
  2003年   113篇
  2002年   117篇
  2001年   49篇
  2000年   25篇
  1999年   27篇
  1998年   30篇
  1997年   15篇
  1996年   25篇
  1995年   28篇
  1994年   14篇
  1993年   18篇
  1992年   13篇
  1991年   10篇
  1990年   7篇
  1989年   13篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   10篇
  1984年   14篇
  1983年   11篇
  1982年   12篇
  1981年   16篇
  1980年   7篇
  1977年   7篇
  1976年   10篇
  1975年   9篇
  1974年   9篇
  1971年   7篇
  1968年   7篇
排序方式: 共有2560条查询结果,搜索用时 0 毫秒
211.
Ectomycorrhizal (ECM) syntheses between four ECM fungi, Laccaria amethystina, Hebeloma mesophaeum, Thelephora terrestris, and Tomentella sp., and Populus maximowiczii seedlings that are known to form ECM at a denuded area of Mt. Usu were performed in volcanic debris in a controlled growth chamber. The percentage of ECM colonization and seedling growth were determined 3 months after inoculation. Seedlings were successfully colonized by the inoculated ECM fungi with low contamination ratios. Seedling height and biomass were larger in the inoculated seedlings than in the control, although the effects of inoculation on seedling growth varied with the ECM fungus.  相似文献   
212.
Sphingomonas paucimobilis SYK-6 is able to grow on various lignin-derived biaryls as the sole source of carbon and energy. These compounds are degraded to vanillate and syringate by the unique and specific enzymes in this strain. Vanillate and syringate are converted to protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by the tetrahydrofolate-dependent O-demethylases. Previous studies have suggested that these compounds are further degraded via the PCA 4,5-cleavage pathway. However, our subsequent analysis of the ligB insertion mutant, which encodes the beta subunit of PCA 4,5-dioxygenase, suggested that at least one alternative route is involved in 3MGA degradation. In the present study, we isolated the desZ gene, which confers 3MGA degradation activity on Escherichia coli. The deduced amino acid sequence of desZ showed ca. 20 to 43% identity with the type II extradiol dioxygenases. Gas chromatography-mass spectrometry analysis suggested that DesZ catalyzes the 3,4-cleavage of 3MGA. Disruption of both desZ and ligB in SYK-6 resulted in loss of the dioxygen-dependent 3MGA transformation activity, but the resulting mutant retained the ability to grow on syringate. We found that the cell extract of the desZ ligB double mutant was able to convert 3MGA to gallate when tetrahydrofolate was added to the reaction mixture, and the cell extract of this mutant degraded gallate to the same degree as the wild type did. All these results suggest that syringate is degraded through multiple 3MGA degradation pathways in which ligAB, desZ, 3MGA O-demethylase, and gallate dioxygenase are participants.  相似文献   
213.
Formin was originally isolated as the gene affected by the murine limb deformity (ld) mutations, which disrupt the epithelial-mesenchymal interactions regulating patterning of the vertebrate limb autopod. More recently, a rapidly growing number of genes with similarity to formin have been isolated from many different species including fungi and plants. Genetic and biochemical analysis shows that formin family members function in cellular processes regulating either cytokinesis and/or cell polarisation. Another common feature among formin family members is their requirement in morphogenetic processes such as budding and conjugation of yeast, establishment of Drosophila oocyte polarity and vertebrate limb pattern formation. Vertebrate formins are predominantly nuclear proteins which control polarising activity in limb buds through establishment of the SHH/FGF-4 feedback loop. Formin acts in the limb bud mesenchyme to induce apical ectodermal ridge (AER) differentiation and FGF-4 expression in the posterior AER compartment. Finally, disruption of the epithelial-mesenchymal interactions controlling induction of metanephric kidneys in ld mutant embryos indicates that formin might function more generally in transduction of morphogenetic signals during embryonic pattern formation. Received: 24 September 1998 / Accepted: 30 September 1998  相似文献   
214.
In many fungi, the heterotrimeric G protein alpha subunits, and/or small G protein (RAS) control intracellular cAMP levels. But it is not clear which types of G proteins modulate cAMP levels in homobasidiomycete (mushrooms). To explain the mechanism, we expressed dominant active RAS (a homolog of S. cerevisiae RAS1) in homobasidiomycete Schizophyllum commune and compared the cAMP levels in the transformed clones with those of clones expressing dominant active heterotrimeric G protein alpha subunits ScGP-A, B, and C. The results demonstrated that the dominant active ScGP-A and C elevated the intracellular cAMP levels. In contrast, the dominant active S. commune RAS gene did not affect the cAMP levels, even though colony growth and formation of fruiting bodies were apparently repressed. These data suggest that the heterotrimeric G protein alpha subunits are involved in the mechanism of cAMP regulation, and that RAS modulates another signal-transduction pathway regulating cell growth and differentiation.  相似文献   
215.
Arai F  Hirao A  Ohmura M  Sato H  Matsuoka S  Takubo K  Ito K  Koh GY  Suda T 《Cell》2004,118(2):149-161
The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.  相似文献   
216.
The mechanism of uptake of phenanthrene by Mycobacterium sp. strain RJGII-135, a polycyclic hydrocarbon-degrading bacterium, was examined with cultures grown on phenanthrene (induced for phenanthrene metabolism) and acetate (uninduced). Washed cells were suspended in aqueous solutions of [9-(14)C]phenanthrene, and then the cells were collected by filtration. Low-level steady-state (14)C concentrations in uninduced cells were achieved within the first 15 s of incubation. This immediate uptake did not show saturation kinetics and was not susceptible to inhibitors of active transport, cyanide and carbonyl cyanide m-chlorophenylhydrazone. These results indicated that phenanthrene enters rapidly into the cells by passive diffusion. However, induced cells showed cumulative uptake over several minutes. The initial uptake rates followed saturation kinetics, with an apparent affinity constant (K(t)) of 26 +/- 3 nM (mean +/- standard deviation). Uptake of phenanthrene by induced cells was strongly inhibited by the inhibitors. Analysis of cell-associated (14)C-labeled compounds revealed that the concurrent metabolism during uptake was rapid and was not saturated at the substrate concentrations tested, suggesting that the saturable uptake observed reflects membrane transport rather than intracellular metabolism. These results were consistent with the presence of a saturable, energy-dependent mechanism for transport of phenanthrene in induced cells. Moreover, the kinetic data for the cumulative uptake suggested that phenanthrene is specifically bound by induced cells, based on its saturation with an apparent dissociation constant (K(d)) of 41 +/- 21 nM (mean +/- standard deviation). Given the low values of K(t) and K(d), Mycobacterium sp. strain RJGII-135 may use a high-affinity transport system(s) to take up phenanthrene from the aqueous phase.  相似文献   
217.
Proanthocyanidins derived from cacao (CLP) have various antipathophysiological functions. We have tested whether dietary supplementation with CLP prevents cataract formation in rats with diabetes induced by streptozotocin (STZ), using histological, histochemical, and biochemical analyses. Starting at 7 days after the streptozotocin challenge, the animals were fed either a normal diet or a diet containing 0.5% w/w CLP over 10 weeks. There were no significant differences in plasma and urine glucose concentrations, plasma fructose amines, and plasma thiobarbituric reactive substances (TBARS) between the two dietary groups. Antioxidant status as assessed by measuring lipid peroxide production in plasma in response to azocompounds was lower in the STZ-rats fed control diet than in animals fed CLP. Opacity was first detected in the lenses of the control dietary group 5 weeks after STZ injection and cataracts had developed in the majority of these animals by 10 weeks. These changes were rarely seen in the STZ/CLP diet group. Histological examinations of the eyes of the STZ-treated normal diet group revealed focal hyperplasia of the lens epithelium and liquefaction of cortical fibers. There were similar but considerably less severe changes in the animals fed CLP. Hydroxynonenal (HNE), a marker of oxidative stress, was detected immunohistochemically in the lenses of the STZ-treated normal diet group, but not of those receiving CLP. Our findings suggest that CLP inhibits diabetes-induced cataract formation possibly by virtue of its antioxidative activity.  相似文献   
218.
F9 murine embryonal carcinoma cells provide an attractive system for facilitating molecular mechanisms for epithelial morphogenesis, since they have the capability of differentiating into polarized epithelial cells bearing an apical junctional complexes. We previously showed that a specific retinoid X receptor-retinoic acid receptor heterodimer transduced retinoid signals for biogenesis of functional tight junctions in F9 cells (Exp. Cell Res. 263, (2001) 163). In the present study we generated F9 cells expressing doxycycline-inducible hepatocyte nuclear factor (HNF)-4alpha, a nuclear receptor. We herein show that induction of HNF-4alpha initiates differentiation of F9 cells to polarized epithelial cells, in which tight-junction proteins occludin, claudin-6, claudin-7, and ZO-1 are concentrated at the apical-most regions of lateral membranes. Expression of occludin, claudin-6, and claudin-7 was induced in the cells by doxycycline treatment in a dose- and time-dependent manner, in terms of the amount of HNF-4alpha. In contrast, expression levels of ZO-1, ZO-2, E-cadherin, and beta-catenin were not altered by HNF-4alpha. We also demonstrate, by analysis of diffusion of labeled sphingomyelin, that the fence function of tight junctions is achieved by induction of HNF-4alpha. These findings indicate that HNF-4alpha triggers de novo formation of functional tight junctions and establishment of epithelial cell polarity.  相似文献   
219.
Polyploid cells are made by DNA reduplication without cell division, however, it is not easy to establish polyploid mammalian cell lines. It is worth studying the difference in cell character between hyperploid and parent cell lines. Meth-A cells were polyploidized by demecolcine, K-252a, staurosporine and paclitaxel. The cell-cycle responses of highly polyploid Meth-A cells after the removal of the drugs were examined by flow cytometry (FCM). Meth-A cells were highly polyploidized by these drugs. The polyploid Meth-A cells gradually decreased in ploidy after the drug release. A tetraploid Meth-A cell line was established only from the demecolcine-induced polyploid Meth-A cells. The duration of G1, S and G2/M phases of the tetraploid cell line were mostly the same as those of the parent diploid cells, except that the G2/M phase was 1.5 h longer. The chromosome number of tetraploid Meth-A cell line was about twice of the diploidy. A tetraploid Meth-A cell line was established.  相似文献   
220.
Polymerase chain reactions with degenerate V gene segment primers were used to isolate the putative T-cell receptor alpha-chain gene (TCRA) from Japanese pufferfish (Takifugu rubripes). The putative TCRA chain cDNA is composed of an N-terminus leader peptide followed by the variable region and the constant region. The variable portion of the TCRA gene is encoded by V and J gene segments separated in the germline. As in mammals, the V-J junction sequences are GC rich and highly diversified. Amino acid residues that are required to maintain the function and structural integrity of the TCRA polypeptide, including the conserved Trp-Tyr-Lys and Tyr-Tyr-Cys motifs in the V gene segments, the Lys-Leu-X-Phe-Gly-X-Gly-Thr-X-Leu motif in the J gene segment, the three cysteine residues in the constant region and the charged residues in the transmembrane region are all preserved in the pufferfish. These conserved features suggest that the TCRA gene families in fish and mammals have evolved from a common ancestor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号