Photosystem II (PSII) functions mainly as a dimer to catalyze the light energy conversion and water oxidation reactions. However, monomeric PSII also exists and functions in vivo in some cases. The crystal structure of monomeric PSII has been solved at 3.6 Å resolution, but it is still not clear which factors contribute to the formation of the dimer. Here, we solved the structure of PSII monomer at a resolution of 2.78 Å using cryo-electron microscopy (cryo-EM). From our cryo-EM density map, we observed apparent differences in pigments and lipids in the monomer-monomer interface between the PSII monomer and dimer. One β-carotene and two sulfoquinovosyl diacylglycerol (SQDG) molecules are found in the monomer-monomer interface of the dimer structure but not in the present monomer structure, although some SQDG and other lipid molecules are found in the analogous region of the low-resolution crystal structure of the monomer, or cryo-EM structure of an apo-PSII monomer lacking the extrinsic proteins from Synechocystis sp. PCC 6803. In the current monomer structure, a large part of the PsbO subunit was also found to be disordered. These results indicate the importance of the β-carotene, SQDG and PsbO in formation of the PSII dimer. 相似文献
We determined whether there is an association between complement factor H (CFH), high-temperature requirement A-1 (HTRA1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor (PEDF) genotypes and the response to treatment with a single intravitreous injection of bevacizumab for age-related macular degeneration (AMD). Eighty-three patients with exudative AMD treated by bevacizumab injection were genotyped for three single nucleotide polymorphisms (SNPs; rs800292, rs1061170, rs1410996) in the CFH gene, a rs11200638-SNP in the HTRA1 gene, three SNPs (rs699947, rs1570360, rs2010963) in the VEGF gene, and four SNPs (rs12150053, rs12948385, rs9913583, rs1136287) in the PEDF gene using a TaqMan assay. The CT genotype (heterozygous) of CFH-rs1061170 was more frequently represented in nonresponders in vision than TT genotypes (nonrisk allele homozygous) at the time points of 1 and 3 months, while there was no CC genotype (risk allele homozygous) in our study cohort (p = 7.66 × 10−3, 7.83 × 10−3, respectively). VEGF-rs699947 was also associated with vision changes at 1 month and PEDF-rs1136287 at 3 months (p = 5.11 × 10−3, 2.05 × 10−2, respectively). These variants may be utilized for genetic biomarkers to estimate visual outcomes in the response to intravitreal bevacizumab treatment for AMD. 相似文献
Uridine 5′-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF2α, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.
It has been argued that when an observer moves, a contingent retinal-image motion of a stimulus would strengthen the perceived glossiness. This would be attributed to the veridical perception of three-dimensional structure by motion parallax. However, it has not been investigated whether the effect of motion parallax is more than that of retinal-image motion of the stimulus. Using a magnitude estimation method, we examine in this paper whether cross-modal coordination of the stimulus change and the observer''s motion (i.e., motion parallax) is essential or the retinal-image motion alone is sufficient for enhancing the perceived glossiness. Our data show that a retinal-image motion simulating motion parallax without head motion strengthened the perceived glossiness but that its effect was weaker than that of motion parallax with head motion. These results suggest the existence of an additional effect of the cross-modal coordination between vision and proprioception on glossiness perception. That is, motion parallax enhances the perception of glossiness, in addition to retinal-image motions of specular surfaces. 相似文献
Fruiting bodies were formed around a Penicillium colony which appeared as a contaminant in a culture of Schizophyllum commune, and this phenomenon was reproduced with a synthesized system consisting of S. commune IAM 9006 and P. funiculosum A-l. The active substances were recovered in an acetone extract of the mycelia of P. funiculosum, purified by silica gel column chromatography and reverse-phase high-performance liquid chromatography, and characterized by infrared spectroscopy, gas-liquid chromatography, gas-liquid chromatography-mass spectroscopy and nuclear magnetic resonance spectroscopy. They were ceramides and cerebrosides having nonadecasphingadienine and 2-hydroxy fatty acid moieties in common. The major component was identified as (4E,8E)-N-2′-hydroxy-(E)-3′-octadecenoyl-1-O-β-glucopyranosyl-9-methyl-4,8-sphingadienine. 相似文献
Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness in humans and nagana in cattle. TAO has been targeted for the development of anti-trypanosomal drugs, because it does not exist in the host. In this study, we established a system for overproduction of highly active TAO in Eschericia coli heme-deficient mutant. Kinetic analysis of recombinant enzyme and TAO in Trypanosoma brucei brucei mitochondria revealed that recombinant TAO retains the properties of native enzyme, indicating that recombinant TAO is quite valuable for further biochemical study of TAO. 相似文献
Micelle formations of sodium glyco- and taurochenodeoxycholate (NaGCDC and NaTCDC) and sodium glyco- and tauroursodeoxycholates (NaGUDC and NaTUDC) was studied at 308.2 K for their critical micelle concentrations at various NaCl concentrations by pyrene fluorescence probe, and the degree of counterion binding to micelle was determined using the Corrin-Harkins plots. The degree of counterion binding was found to be 0.37-0.38 for chenodeoxycholate conjugates, while the determination of the degree was quite difficult for ursodeoxycholate conjugates. The change of I1/I3 values on the fluorescence spectrum with the conjugate bile salt concentration suggested two steps for their bile salt aggregation. The first step is a commencement of smaller aggregates, the first cmc, and the second one is a starting of stable aggregates, the second cmc. The aggregation number was determined at 308.2 K and 0.15 M NaCl concentration by static light scattering: 16.3 and 11.9 for sodium NaGCDC and NaTCDC, and 7.9 and 7.1 for NaGUDC and NaTUDC, respectively. The solubilization of cholesterol into the bile salt micelles in the presence of coexisting cholesterol phase and the maximum additive concentration (MAC) of cholesterol was determined against the bile salt concentration. The standard Gibbs energy change for the solubilization was evaluated, where the micelles were regarded as a chemical species. The solubilization was stabilized in the order of NaGUDC approximately = NaTUDC < NaTC < NaGC < NaTCDC < NaGCDC < NaTDC < NaGDC, where the preceding results were taken into the order. 相似文献
Polyethylene (PE) sheets were modified by radiation-induced graft polymerization (RIGP) of an epoxy-group containing monomer glycidyl methacrylate (GMA). The epoxy group of GMA was opened by introducing sodium sulfite (SS) and diethylamine (DEA) as representatives of negatively and positively charged functional groups, respectively. These modified surfaces by RIGP, termed GMA, SS, and DEA sheets, were investigated to elucidate their effects on initial adhesion and subsequent biofilm formation of Escherichia coli. Initial adhesion test revealed that E. coli density and viability were governed by sheet surface electrostatic property: E. coli cell density on the DEA sheet was 23 times higher than that on the SS sheet after 8 h incubation. The viability of E. coli cells dramatically decreased after contact with the DEA sheet, but remained high on the SS sheet. E. coli biofilm structure on the DEA sheet was dense, homogeneous, and uniform, with biomass higher than that of the GMA and SS sheets by factors of 14.0 and 37.5, respectively. On the contrary, biofilm structure on the SS sheet was sparse, heterogeneous, and mushroom-shaped. More than 40% of E. coli biofilm on the DEA sheet was retained under a high liquid shear force condition (5,000 s(-1)), whereas 97% and 100% of biofilms on the GMA and SS sheets were sloughed, indicating that E. coli biofilm robustness depends on surface charge property of the substratum. This suggests that substratum surface fabrication by RIGP may enhance or suppress biofilm formation, a finding with potentially important practical implications. 相似文献