Obstructive sleep apnea syndrome (OSAS) is closely associated with hypertension. Activity of angiotensin II (Ang II) and non-dipping nocturnal blood pressure (BP) variability are implicated in hypertension-related target organ damage. We examined the correlation between OSAS with serum Ang II levels and evaluated the risk of non-dipping BP variability in 180 patients with essential hypertension (EHT). Eligible patients were divided into three subgroups based on their apnea-hypopnea index (AHI) evaluated by polysomnography. EHT alone, EHT with mild OSAS, and EHT with moderate/severe OSAS. Ambulatory BP monitoring was used to calculate mean BP over 24 h, as well as diurnal and nocturnal BP variability. Serum Ang II was determined with enzyme-linked immun-osorbent assay. EHT patients with OSAS had significantly higher systolic BP calculated either over 24 h, or by diurnal or nocturnal monitoring (P < 0.05). More EHT patients with OSAS showed non-dipping BP profiles than did EHT patients alone (P < 0.05). The number of patients with non-dipping BP increased with increasing OSAS severity. Surgical treatment alleviated OSAS and reduced AHI (P < 0.05). Preoperative serum Ang II in EHT patients with OSAS was significantly higher than that in those without OSAS (P < 0.05), and showed a rising trend with OSAS severity (P < 0.05). Postoperative serum Ang II, BP and the incidence of non-dipping BP were reduced by surgery to levels lower than preoperative values in patients with OSAS. We therefore conclude that OSAS leads to increased serum Ang II and increased risk of non-dipping BP in patients with EHT.
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation. 相似文献
Biological thiol compounds are classified into high-molecular-mass protein thiols and low-molecular-mass free thiols. Endogenous low-molecular-mass thiol compounds, namely, reduced glutathione (GSH) and its corresponding disulfide, glutathione disulfide (GSSG), are very important molecules that participate in a variety of physiological and pathological processes. GSH plays an essential role in protecting cells from oxidative and nitrosative stress and GSSG can be converted into the reduced form by action of glutathione reductase. Measurement of GSH and GSSG is a useful indicator of oxidative stress and disease risk. Many publications have reported successful determination of GSH and GSSG in biological samples. In this article, we review newly developed techniques, such as liquid chromatography coupled with mass spectrometry and tandem mass spectrometry, for identifying GSH bound to proteins, or for localizing GSH in bound or free forms at specific sites in organs and in cellular locations. 相似文献
The mechanisms of obesity associated reproductive complications remain poorly understood. Endometrial mesenchymal stem-cells are critical for cyclic renewal and uterine function. Recently, W5C5+ cells, with high clonogenicity, capable of producing endometrial stroma in vivo, have been described. We sought to investigate the abundance and cloning efficiency of W5C5+ and W5C5− endometrial cells in relation to Body Mass Index, age and reproductive outcome.
Design
W5C5+ and W5C5− cells were purified from mid-luteal endometrial biopsies (n = 54) by magnetic bead separation and subjected to in vitro colony-forming assays.
Results
First trimester pregnancy losses were significantly higher in obese subjects (n = 12) compared to overweight (n = 20) and subjects with normal Body Mass Index (n = 22) (P<0.05, P<0.01, respectively). W5C5+ cells (%) were significantly lower in obese subjects compared to subjects with normal Body Mass Index (P<0.05). W5C5+ cloning efficiency was significantly lower in obese subjects compared to overweight and subjects with normal Body Mass Index (P<0.05, respectively). W5C5− cloning efficiency was significantly lower in obese subjects compared to subjects with normal Body Mass Index (P<0.05). Body Mass Index was significantly negatively correlated with W5C5+ cloning efficiency and W5C5− cloning efficiency (P<0.01, respectively), and positively correlated with first trimester loss (P<0.01). We found no significant results with age (P>0.05).
Conclusions
Our observations suggest that the regenerative capacity and plasticity of the endometrium of obese women is suboptimal, which in turn may account for the increased risk of reproductive complications associated with obesity. 相似文献
Two cDNA forms were characterized for a human dnaJ homologue, HSJ2. Nucleotide sequencing showed that the gene product HSJ2 was longer than previously reported, extending its homology to other human DnaJ paralogues, and that the two cDNAs encoded two proteins as a result of alternative splicing. The products were 326 amino acids (designated as HSJ2a) and 241 amino acids (HSJ2b) in length, sharing the N-terminal 231 amino acids including the DnaJ homology region. When fused to green fluorescent protein and expressed in HeLa cells, HSJ2a was found to be localized to the nucleus, indicating that HSJ2a is a nuclear co-chaperone. HSJ2b, however, was observed throughout the cell, consistent with the elimination of a putative nuclear localization signal sequence as a result of the alternative splicing. 相似文献
Sulfo-glycolipids in the class of sulfoquinovosyl diacylglycerol (SQDG) including the stereoisomers are potent inhibitors of DNA polymerase alpha and beta. However, since the alpha-configuration of SQDG with two stearic acids (alpha-SQDG-C(18)) can hardly penetrate cells, it has no cytotoxic effect. We tried and succeeded in making a permeable form, sulfoquinovosyl monoacylglycerol with a stearic acid (alpha-SQMG-C(18)) from alpha-SQDG-C(18) by hydrolysis with a pancreatic lipase. alpha-SQMG-C(18) inhibited DNA polymerase activity and was found to be a potent inhibitor of the growth of NUGC-3 cancer cells. alpha-SQMG-C(18) arrested the cell cycle at the G1 phase, and subsequently induced severe apoptosis. The arrest was correlated with an increased expression of p53 and cyclin E, indicating that alpha-SQMG-C(18) induced cell death through a p53-dependent apoptotic pathway. 相似文献
Arodent cardiac side population cell fraction formed clonal spheroids in serum-free medium, which expressed nestin, Musashi-1, and multi-drug resistance transporter gene 1, markers of undifferentiated neural precursor cells. These markers were lost following differentiation, and were replaced by the expression of neuron-, glial-, smooth muscle cell-, or cardiomyocyte-specific proteins. Cardiosphere-derived cells transplanted into chick embryos migrated to the truncus arteriosus and cardiac outflow tract and contributed to dorsal root ganglia, spinal nerves, and aortic smooth muscle cells. Lineage studies using double transgenic mice encoding protein 0-Cre/Floxed-EGFP revealed undifferentiated and differentiated neural crest-derived cells in the fetal myocardium. Undifferentiated cells expressed GATA-binding protein 4 and nestin, but not actinin, whereas the differentiated cells were identified as cardiomyocytes. These results suggest that cardiac neural crest-derived cells migrate into the heart, remain there as dormant multipotent stem cells-and under the right conditions-differentiate into cardiomyocytes and typical neural crest-derived cells, including neurons, glia, and smooth muscle. 相似文献