首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   12篇
  284篇
  2022年   2篇
  2021年   5篇
  2019年   8篇
  2018年   11篇
  2017年   6篇
  2016年   8篇
  2015年   7篇
  2014年   15篇
  2013年   15篇
  2012年   23篇
  2011年   25篇
  2010年   21篇
  2009年   13篇
  2008年   15篇
  2007年   19篇
  2006年   13篇
  2005年   13篇
  2004年   13篇
  2003年   12篇
  2002年   10篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1965年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
221.
Nitrification has been believed to be performed only by autotrophic ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) until the recent discovery of ammonia-oxidizing archaea (AOA). Meanwhile, it has been questioned whether AOB are significantly responsible for NH(3) oxidation in acidic forest soils. Here, we investigated nitrifying communities and their activity in highly acidified soils of three subtropical forests in southern China that had received chronic high atmospheric N deposition. Nitrifying communities were analyzed using PCR- and culture (most probable number)-based approaches. Nitrification activity was analyzed by measuring gross soil nitrification rates using a (15) N isotope dilution technique. AOB were not detected in the three forest soils: neither via PCR of 16S rRNA and ammonia monooxygenase (amoA) genes nor via culture-based approaches. In contrast, an extraordinary abundance of the putative archaeal amoA was detected (3.2?×?10(8) -1.2?×?10(9) g?soil(-1) ). Moreover, this abundance was correlated with gross soil nitrification rates. This indicates that amoA-possessing archaea rather than bacteria were predominantly responsible for nitrification of the soils. Furthermore, sequences of the genus Nitrospira, a dominant group of soil NOB, were detected. Thus, nitrification of acidified subtropical forest soils in southern China could be performed by a combination of AOA and NOB.  相似文献   
222.
Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases.  相似文献   
223.
Until now, various stimuli as well as serial passaging have been known to induce cellular senescence in normal human diploid fibroblasts. However, in many cases, we have encountered difficulty in quantitatively analyzing the cellular senescence phenotypes of senescent cells in a physiological condition. High-content screening (HCS)-based image analysis is becoming an important and powerful research tool. In the present study, an automated and quantitative cellular image-analysis system was employed to quantify the cellular senescence phenotypes induced in normal human diploid fibroblasts, TIG-1 cells, and found to be a powerful tool in the cellular senescence study.  相似文献   
224.
IL-17A is a T cell-derived proinflammatory cytokine that contributes to the pathogenesis of rheumatoid arthritis. Recently, six related molecules have been identified to form the IL-17 family, as follows: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. Whereas IL-17A and IL-17F up-regulate IL-6 in synovial fibroblasts, IL-17B and IL-17C are reported to stimulate the release of TNF-alpha and IL-1beta from the monocytic cell line, THP-1 cell. However, their detailed function remains to be elucidated. We report in this study the effects of IL-17 family on the collagen-induced arthritis (CIA) progression by T cell gene transfer and bone marrow chimeric mice. The mRNA expressions of IL-17 family (IL-17A, IL-17B, IL-17C, and IL-17F) and their receptor (IL-17R and IL-17Rh1) genes in the arthritic paws of CIA mice were elevated compared with controls. Although IL-17A and IL-17F were expressed in CD4(+) T cells, IL-17B and IL-17C were expressed in the cartilage and in various cell populations in the CIA arthritic paws, respectively. In vitro, IL-17A, IL-17B, IL-17C, and IL-17F induced TNF-alpha production in mouse peritoneal exudate cells. In vivo, adoptive transfer of IL-17B- and IL-17C-transduced CD4(+) T cells evidently exacerbated arthritis. Bone marrow chimeric mice of IL-17B and IL-17C exhibited elevated serum TNF-alpha concentration and the high arthritis score upon CIA induction. Moreover, neutralization of IL-17B significantly suppressed the progression of arthritis and bone destruction in CIA mice. Therefore, not only IL-17A, but also IL-17B and IL-17C play an important role in the pathogenesis of inflammatory arthritis.  相似文献   
225.
In addition to genetic changes, the occurrence of epigenetic alterations is associated with accumulation of both genetic and epigenetic events that promote the development and progression of human cancer. Previously, we reported a set of candidate genes that comprise part of the emerging “cancer methylome”. In the present study, we first tested 23 candidate genes for promoter methylation in a small number of primary colon tumor tissues and controls. Based on these results, we then examined the methylation frequency of Oncostatin M receptor-β (OSMR) in a larger number of tissue and stool DNA samples collected from colon cancer patients and controls. We found that OSMR was frequently methylated in primary colon cancer tissues (80%, 80/100), but not in normal tissues (4%, 4/100). Methylation of OSMR was also detected in stool DNA from colorectal cancer patients (38%, 26/69) (cut-off in TaqMan-MSP, 4). Detection of other methylated markers in stool DNA improved sensitivity with little effect on specificity. Promoter methylation mediated silencing of OSMR in cell lines, and CRC cells with low OSMR expression were resistant to growth inhibition by Oncostatin M. Our data provide a biologic rationale for silencing of OSMR in colon cancer progression and highlight a new therapeutic target in this disease. Moreover, detection and quantification of OSMR promoter methylation in fecal DNA is a highly specific diagnostic biomarker for CRC.  相似文献   
226.
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training.  相似文献   
227.
We previously reported that the mouse α/β hydrolase domain containing 2 (Abhd2) was expressed in smooth muscle cells (SMCs) which suppressed their migration and inhibited the development of intimal hyperplasia by cuff placement; however, the role of ABHD2 in human remains to be elucidated. In this study, we examined ABHD2 expression in the human coronary atherosclerotic lesions of the patients with unstable angina (UA) and stable angina (SA). Our results showed that the ABHD2 was expressed in atherosclerotic lesions, and that the ABHD2 expression was significantly higher in the patients with UA than with SA. Immunohistochemistry analysis revealed abundant expression of ABHD2 in macrophages, but low expression in SMCs of atherosclerotic lesions. Using human vascular primary culture cell lines, we also demonstrated that the expression of ABHD2 was significantly higher in macrophages than in SMCs, and that the expression of ABHD2 significantly increased proportionally with differentiation from monocyte into macrophage.  相似文献   
228.
We developed a novel method to isolate functionally active single cells from environmental samples and named it the functional single-cell (FSC) isolation method. This method is based on a combination of substrate-responsive direct viable counts, live-cell staining with 5-carboxyfluorescein diacetate acetoxymethyl ester, and micromanipulation followed by cultivation in a medium. To evaluate this method, we applied it to study a denitrifying community in rice paddy soil. Similar denitrifier counts were obtained by the conventional most probable number analysis and our FSC isolation method. Using the FSC isolation method, 37 denitrifying bacteria were isolated, some of which harbored copper-containing nitrite reductase gene (nirK). The 16S rRNA gene analysis showed that members belonging to the genera Azospirillum and Ochrobactrum may be the major denitrifiers in the rice paddy soil. These results indicate that the FSC isolation method is a useful tool to obtain functionally active single cells from environmental samples.  相似文献   
229.
Lipid mediators, thromboxane A2 (TxA2) and platelet-activating factor (PAF), are potent vasoconstrictors, and have been implicated as mediators of liver diseases, such as ischemic-reperfusion injury. We determined the effects of a TxA2 analogue (U-46619) and PAF on the vascular resistance distribution and liver weight (wt) in isolated guinea pig livers perfused with blood via the portal vein. The sinusoidal pressure was measured by the double occlusion pressure (P(do)), and was used to determine the pre- (R(pre)) and post-sinusoidal (R(post)) resistances. U-46619 and PAF concentration-dependently increased the hepatic total vascular resistance (R(t)). The minimum concentration at which significant vasoconstriction occurs was 0.001 microM for PAF and 0.1 microM for U-46619. Moreover, the concentration of U-46619 required to increase R(t) to the same magnitude is 100 times higher than PAF. Thus, the responsiveness to PAF was greater than that to U-46619. Both agents increased predominantly R(pre) over R(post). U-46619 caused a sustained liver weight loss. In contrast, PAF also caused liver weight loss at lower concentrations, but it produced liver weight gain at higher concentrations (2.5 +/- 0.3 per 10g liver weight at 1 microM PAF), which was caused by substantial post-sinusoidal constriction and increased P(do). In conclusion, both TxA2 and PAF contract predominantly the pre-sinusoidal veins. TxA2 causes liver weight loss, while PAF at high concentrations increases liver weight due to substantial post-sinusoidal constriction in isolated guinea pig livers.  相似文献   
230.
Rhizonin is a hepatotoxic cyclopeptide isolated from cultures of a fungal Rhizopus microsporus strain that grew on moldy ground nuts in Mozambique. Reinvestigation of this fungal strain by a series of experiments unequivocally revealed that this “first mycotoxin from lower fungi” is actually not produced by the fungus. PCR experiments and phylogenetic studies based on 16S rRNA gene sequences revealed that the fungus is associated with bacteria belonging to the genus Burkholderia. By transmission electron microscopy, the bacteria were localized within the fungal cytosol. Toxin production and the presence of the endosymbionts were correlated by curing the fungus with an antibiotic, yielding a nonproducing, symbiont-free phenotype. The final evidence for a bacterial biogenesis of the toxin was obtained by the successful fermentation of the endosymbiotic bacteria in pure culture and isolation of rhizonin A from the broth. This finding is of particular interest since Rhizopus microsporus and related Rhizopus species are frequently used in food preparations such as tempeh and sufu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号