The development of an adaptive immune system based on the random generation of antigen receptors requires a stringent selection process that sifts through receptor specificities to remove those reacting with self-antigens. In the B-cell lineage, this selection process is first applied to IgM
+ immature B cells. By using increasingly sophisticated mouse models, investigators have identified the central tolerance mechanisms that negatively select autoreactive immature B cells and prevent inclusion of their antigen receptors into the peripheral B-cell pool. Additional studies have uncovered mechanisms that promote the differentiation of nonautoreactive immature B cells and their positive selection into the peripheral B-cell population. These mechanisms of central selection are fundamental to the generation of a naïve B-cell repertoire that is largely devoid of self-reactivity while capable of reacting with any foreign insult.B-cell generation in the bone marrow of adult mammals occurs through a tightly controlled developmental process (). Productive rearrangement of immunoglobulin heavy (IgH) and light (IgL) chain gene segments in B lymphocyte precursor cells, in addition to the expression of Ig-α (CD79a) and Ig-β (CD79b), result in the generation and expression on the cell surface of a mature B-cell antigen receptor (BCR). Whereas the combination of Ig H and L chains determines the antigenic specificity of the newly formed BCR, their association with Ig-α and Ig-β allows transduction of a signal inside the cell that directs cell fate. Developing B cells first express a mature BCR on the cell surface in the form of IgM and as such are classified as immature B cells () (
Hardy et al. 1991;
Pelanda et al. 1996). It is at the immature B-cell stage that the BCR is tested for the first time for reactivity against autoantigens. This test determines whether the immature B cell and the antibody it expresses on the surface will be selected into the peripheral B-cell repertoire. Central B-cell tolerance, in fact, refers to the process that negatively selects newly generated immature B cells that react with a self-antigen in the bone marrow environment. This is considered the first checkpoint of B-cell tolerance, and the results of this checkpoint are fundamental to the generation of a naïve repertoire that contains foreign reactive antibodies and is largely devoid of self-reactive specificities.
Open in a separate windowSchematic representation of B-cell development and Ig loci in mice. Large pro-B cells initiate Ig gene rearrangement at the IgH locus. Expression of a H chain following a productive
VHDHJH recombination event promotes the differentiation of large pre-B cells in which the expression of pre-BCR (H chain pairing with surrogate light chains) results in the clonal expansion of H chain-positive pre-B cells and the development of small pre-B cells. Expression of conventional L chains following productive rearrangements at the IgL chain loci in small pre-B cells promotes the development of a diverse population of IgM
+ immature B cells, which then differentiate into IgM
+IgD
+ transitional B cells. The scheme of mouse Ig H, κ, and λ loci (not to scale) indicate the presence of
V (white rectangles),
D (black vertical lines),
J (brown vertical lines; a dashed line indicates a nonfunctional element), and
C (black rectangles; a gray rectangle indicates a nonfunctional element) gene segments. The scheme does not represent the number of
VH,
DH, and
Vκ gene segments in the actual Ig loci.On passing this central checkpoint, immature B cells continue to differentiate into transitional and mature B cells before and after they travel to the spleen (
Loder et al. 1999;
Allman et al. 2001;
Su and Rawlings 2002;
Tarlinton et al. 2003). Analysis of the bone marrow early immature B-cell repertoire indicates that a staggering 50%–75% of these cells express BCRs that are specific for self-antigens, both in mice and humans (
Grandien et al. 1994;
Wardemann et al. 2003). Similar studies performed on cell populations at the other end of this central checkpoint, namely, transitional and naïve mature B cells in spleen and blood, show a much lower frequency (20%–40%) of cells expressing autoreactive antibodies (
Grandien et al. 1994;
Wardemann et al. 2003), demonstrating the stringency and limitation of this initial selection step. Moreover, individuals affected by autoimmune disease such as lupus erythematosus or rheumatoid arthritis bear many more autoreactive cells in their new emigrant and naïve B-cell populations (
Samuels et al. 2005;
Yurasov et al. 2005), indicating a defect in central (and/or peripheral) B-cell selection. Thus, it seems important that the development of autoreactive immature B cells be constrained to prevent the potential occurrence of autoimmunity. However, there are also reasons to believe that the high frequency of autoreactive specificities generated during primary Ig gene rearrangements may be necessary for the generation of the peripheral B-cell repertoire (
Pelanda et al. 1997;
Kohler et al. 2008). Indeed, a fraction of autoreactive immature B cells, those manifesting a low level of self-reactivity, do bypass the central checkpoint of tolerance and differentiate into mature B cells (
Hayakawa et al. 2003;
Wardemann et al. 2003;
Wen et al. 2005). The inclusion of these weakly self-reactive B cells in the peripheral B-cell repertoire may allow recognition of a broader spectrum of foreign molecules, potentially decreasing the negative impact of infections, especially at early stages (
Mouquet et al. 2010).What are the rules that govern the selection of immature B cells? Most studies of central tolerance have been conducted by following the selection of B cells expressing BCRs displaying well-defined reactivity for natural or synthetic self-antigens. This has been accomplished through the use of Ig transgenic mice in which developing B cells have been altered to carry prerearranged Ig H and L chain genes encoding antibodies of defined antigen specificity and reactivity. Here we review some of these studies, what we have learned from them, and open questions that still await answers.
相似文献