首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4608篇
  免费   278篇
  2022年   24篇
  2021年   38篇
  2020年   20篇
  2019年   34篇
  2018年   47篇
  2017年   44篇
  2016年   80篇
  2015年   133篇
  2014年   136篇
  2013年   312篇
  2012年   289篇
  2011年   284篇
  2010年   171篇
  2009年   169篇
  2008年   267篇
  2007年   248篇
  2006年   281篇
  2005年   250篇
  2004年   254篇
  2003年   246篇
  2002年   237篇
  2001年   97篇
  2000年   92篇
  1999年   82篇
  1998年   60篇
  1997年   66篇
  1996年   63篇
  1995年   61篇
  1994年   47篇
  1993年   51篇
  1992年   64篇
  1991年   62篇
  1990年   59篇
  1989年   49篇
  1988年   51篇
  1987年   31篇
  1986年   25篇
  1985年   42篇
  1984年   32篇
  1983年   22篇
  1982年   29篇
  1981年   39篇
  1980年   21篇
  1979年   19篇
  1978年   37篇
  1977年   19篇
  1976年   23篇
  1975年   14篇
  1968年   7篇
  1966年   10篇
排序方式: 共有4886条查询结果,搜索用时 15 毫秒
141.
Tropical landscape structures have been transformed into mosaic structures consisting of small patches of primary and secondary forests, and areas of other land use. Diversity of insect assemblages is often higher in primary forests than in surrounding secondary forests. However, little is known about how the primary forests affect diversity in surrounding secondary forests in a landscape. In Sarawak, Malaysia, the typical landscape in areas from which lowland tropical rainforests had originally spread consists mainly of primary and secondary forests, with small areas of cultivation. In this study, we examined how the proportion of remnant primary forests in a landscape affects species diversity and species composition of ants and dung beetles in Macaranga-dominated secondary forests. The proportions were quantified based on remote-sensing data at various spatial scales, ranging from 100- to 5,000-m radius from each of the target forests. We found that the proportions of remnant primary forests within a 100-m radius had a significant positive effect on ant species diversity, and those within 100-, 300-, and 500-m radii significantly affected species compositions. However, the proportions of remnant primary forests had no significant relationship with dung beetle diversity, while those within 100- and 1,000-m radii had significant effects on species composition. The different responses to the remnant primary forests are likely to be related to differences in the movement and dispersal traits between the two taxa.  相似文献   
142.
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.  相似文献   
143.
Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.  相似文献   
144.
145.
Lecanicillium lecanii, Verticillium chlamydosporium, V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n-hexane, toluene and n-hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of Lecanicillium were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of n-hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of n-hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases, N-acetylhexosaminidase and production of hydrophobins class I and II.  相似文献   
146.
Hyperbranched poly-l-lactides have been synthesized by eROP in [C4MIM][PF6] media. The bis(hydroxymethyl)butyric acid molecule was used as the AB2 core co-monomer and immobilized lipase B from Candida antarctica as biocatalyst. The degree of branching could be controlled by the reaction conditions, with the maximum achieved being 0.21. The successful achievement of the hyperbranched structure is attributed to the high solvent power of substrates and products in the ionic liquid besides sustained lipase activity.  相似文献   
147.
Follicular populations were investigated in female F344/N rats to better understand the aging process of the rat ovary. Ovaries dissected at various ages (spanning 1–36 months old) were submitted for histological examination. The total number of primordial, growing (primary and secondary), tertiary, and atretic follicles as well as corpora lutea (CL) were counted in hematoxylin–eosin- and azocarmine–aniline-blue-stained ovarian sections. The number of healthy follicles including primordial, growing and tertiary follicles decreased rapidly between the first and third months and gradually thereafter. CL were found in 3-month-old rats, and their number remained unchanged until 18 months of age, at which point it decreased. The number of atretic follicles started to increase in rats older than 18 months, which corresponded to the cessation of estrous cyclicity. Several healthy follicles and CL were observed even in 36-month-old rats.  相似文献   
148.
149.
We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.  相似文献   
150.
The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号