首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2904篇
  免费   172篇
  2023年   2篇
  2022年   17篇
  2021年   30篇
  2020年   15篇
  2019年   23篇
  2018年   32篇
  2017年   34篇
  2016年   58篇
  2015年   99篇
  2014年   95篇
  2013年   210篇
  2012年   211篇
  2011年   210篇
  2010年   133篇
  2009年   127篇
  2008年   198篇
  2007年   179篇
  2006年   201篇
  2005年   191篇
  2004年   194篇
  2003年   179篇
  2002年   177篇
  2001年   29篇
  2000年   20篇
  1999年   28篇
  1998年   37篇
  1997年   35篇
  1996年   38篇
  1995年   36篇
  1994年   25篇
  1993年   26篇
  1992年   18篇
  1991年   21篇
  1990年   14篇
  1989年   16篇
  1988年   7篇
  1987年   8篇
  1986年   7篇
  1985年   4篇
  1984年   13篇
  1983年   6篇
  1982年   12篇
  1981年   21篇
  1980年   9篇
  1978年   7篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1962年   2篇
  1961年   3篇
排序方式: 共有3076条查询结果,搜索用时 15 毫秒
991.
992.
We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney.  相似文献   
993.
Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv) from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch consistency and vaccine safety as an alternative to animal testing.  相似文献   
994.

Bent DNAs are known to migrate slower than ordinary DNA in non-denaturing polyacrylamide gel electrophoresis. In contrast, several satellite DNAs have been shown to migrate fast. The structural property that causes the fast migration, however, is not clarified so far on molecular basis. We have investigated the structural property of a satellite DNA, which contains consecutive purine sequences and migrates faster in gel, by CD spectroscopy. Partial formation of an A-form–like structure has been suggested. Reduction in DNA length due to the formation of the A-form–like structure may be responsible for the fast migration. The pronounced rigidity of DNA may also contribute to the behavior.  相似文献   
995.
The antagonistic interaction with host restriction proteins is a major driver of evolutionary change for viruses. We previously reported that polymorphisms of the TRIM5α B30.2/SPRY domain impacted the level of SIVsmm viremia in rhesus macaques. Viremia in macaques homozygous for the non-restrictive TRIM5α allele TRIM5Q was significantly higher than in macaques expressing two restrictive TRIM5alpha alleles TRIM5TFP/TFP or TRIM5Cyp/TFP. Using this model, we observed that despite an early impact on viremia, SIVsmm overcame TRIM5α restriction at later stages of infection and that increasing viremia was associated with specific amino acid substitutions in capsid. Two amino acid substitutions (P37S and R98S) in the capsid region were associated with escape from TRIM5TFP restriction and substitutions in the CypA binding-loop (GPLPA87-91) in capsid were associated with escape from TRIM5Cyp. Introduction of these mutations into the original SIVsmE543 clone not only resulted in escape from TRIM5α restriction in vitro but the P37S and R98S substitutions improved virus fitness in macaques with homozygous restrictive TRIMTFP alleles in vivo. Similar substitutions were observed in other SIVsmm strains following transmission and passage in macaques, collectively providing direct evidence that TRIM5α exerts selective pressure on the cross-species transmission of SIV in primates.  相似文献   
996.
Telomeres distinguish chromosome ends from double-strand breaks (DSBs) and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ) and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells. We have previously proposed that the telomeric protein TRF2 causes the sensitivity of telomeric regions to DSBs, either through its inhibition of ATM, or by promoting the processing of DSBs as though they are telomeres, which is independent of ATM. Our current study addresses the mechanism responsible for the deficiency in repair of DSBs near telomeres by combining assays for large deletions, NHEJ, small deletions, and gross chromosome rearrangements (GCRs) to compare the types of events resulting from DSBs at interstitial and telomeric DSBs. Our results confirm the sensitivity of telomeric regions to DSBs by demonstrating that the frequency of GCRs is greatly increased at DSBs near telomeres and that the role of ATM in DSB repair is very different at interstitial and telomeric DSBs. Unlike at interstitial DSBs, a deficiency in ATM decreases NHEJ and small deletions at telomeric DSBs, while it increases large deletions. These results strongly suggest that ATM is functional near telomeres and is involved in end protection at telomeric DSBs, but is not required for the extensive resection at telomeric DSBs. The results support our model in which the deficiency in DSB repair near telomeres is a result of ATM-independent processing of DSBs as though they are telomeres, leading to extensive resection, telomere loss, and GCRs involving alternative NHEJ.  相似文献   
997.
998.
Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on cells. These bioactive collagen peptides are locally generated by the degradation of endogenous collagen in response to injury. However, no comprehensive study has yet explored the functional links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell proliferation, with significantly upregulated extracellular signal–regulated kinase phosphorylation and extracellular matrix production and increased type I collagen network organization. Using proteomics, we have predicted molecular transport, cellular assembly and organization, and cellular movement as potential linked-network pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp demonstrate increased directional persistence and significantly increased directed motility and migration velocity. They are accompanied by elongated lamellipodial protrusions with increased levels of active β1-integrin–containing focal contacts, as well as reorganization of thicker peripheral F-actin fibrils. Pro-Hyp–mediated chemotactic activity is significantly reduced (p < 0.001) in cells treated with the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or the α5β1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in translational medicine.  相似文献   
999.
1000.
We examined the effect of n ?3 PUFAs (polyunsaturated fatty acids) on the growth and maturation of human preadipocyte cell line AML‐I. On day 3 of the culture, n ?3 fatty acids such as DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid), but not n ?6 fatty acid LA (linoleic acid), induced growth arrest accompanied by the appearance of characteristics of apoptosis in AML‐I cells at concentrations between 250 and 500 μM by Annexin V‐FITC staining. In Western blotting analysis, the loss of NF‐κB, Bcl‐2 and p‐Akt and the accumulation of Bad and Akt were observed in the cytoplasmic protein from the EPA‐treated cells. Exposure of AML‐I to EPA or DHA increased the cytoplasmic lipid accumulation compared with the vehicle‐treated cells in a time‐dependent manner during 4 and 6 days culture period by Oil Red O staining. The expression of FAS (fatty acid synthase) and PPAR‐γ (peroxisome proliferator‐activated receptor‐γ) were increased in EPA‐treated cells. These results suggest that EPA and DHA promote differentiation, inhibit proliferation and induce apoptosis in preadipocyte cell line AML‐I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号