首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7972篇
  免费   492篇
  国内免费   1篇
  2022年   29篇
  2021年   84篇
  2020年   49篇
  2019年   65篇
  2018年   86篇
  2017年   85篇
  2016年   137篇
  2015年   233篇
  2014年   257篇
  2013年   526篇
  2012年   430篇
  2011年   436篇
  2010年   269篇
  2009年   265篇
  2008年   402篇
  2007年   394篇
  2006年   412篇
  2005年   417篇
  2004年   408篇
  2003年   379篇
  2002年   371篇
  2001年   240篇
  2000年   243篇
  1999年   204篇
  1998年   95篇
  1997年   88篇
  1996年   82篇
  1995年   86篇
  1994年   80篇
  1993年   87篇
  1992年   153篇
  1991年   127篇
  1990年   125篇
  1989年   138篇
  1988年   98篇
  1987年   109篇
  1986年   86篇
  1985年   74篇
  1984年   75篇
  1983年   55篇
  1982年   42篇
  1981年   56篇
  1980年   33篇
  1979年   52篇
  1978年   31篇
  1977年   40篇
  1976年   26篇
  1975年   27篇
  1974年   26篇
  1973年   21篇
排序方式: 共有8465条查询结果,搜索用时 173 毫秒
971.
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.  相似文献   
972.
973.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, has been shown to be increased in bronchoalveolar lavage fluid after allergen challenge in asthmatic patients. Here, we examined S1P actions and their intracellular signalings in cultured human bronchial smooth muscle cells (BSMCs). Expression of mRNAs of three subtypes of S1P receptors, including S1P(1), S1P(2), and S1P(3), was detected in BSMCs, and exposure of the cells to S1P inhibited platelet-derived growth factor (PDGF)-induced migration and tumor necrosis factor-alpha-induced RANTES production. S1P also inhibited PDGF-induced Rac1 activation, and dominant negative Rac1 inhibited PDGF-induced migration. On the other hand, dominant negative Galpha(q) attenuated the S1P-induced inhibition of RANTES production. Finally, an S1P(2)-selective antagonist, JTE-013, suppressed the S1P-induced inhibition of migration response and RANTES production. These results suggest that S1P attenuates cell migration by inhibiting a Rac1-dependent signaling pathway and decreases RANTES production by stimulating a Galpha(q)-dependent mechanism both possibly through the S1P(2) receptors.  相似文献   
974.
To isolate thermostability-related amino acid residues of Streptomyces phospholipase D (PLD), we constructed a chimeral genes library between two highly homologous plds, which exhibited different thermostabilities, by an in vivo DNA shuffling method using Escherichia coli that has a mutation of a single-stranded DNA-binding protein gene. To confirm the location of the recombination site, we carried out the restriction mapping of 68 chimeral pld genes. The recombination sites were widely dispersed over the entire pld sequence. Moreover, we examined six chimeral PLDs by comparing their thermostabilities with those of parental PLDs. To identify a thermostability-related amino acid residue, we investigated the thermostability of chimera C that was the most thermolabile among the six chimeras. We identified the thermostability-related factor Gly-188, which is located in the alpha-7 helix of PLD from Streptomyces septatus TH-2 (TH-2PLD). TH-2PLD mutants, in which Gly-188 was substituted with Phe, Val or Trp, exhibited higher thermostabilities than that of the parental PLD. Gly-188 substituted with the Phe mutant, which was the most stable among the mutants, showed an enzyme activity almost the same as that of TH-2PLD as determine by kinetic analysis.  相似文献   
975.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   
976.
A quartz-crystal microbalance (QCM) technique was applied to analyze effects of site-directed mutagenesis of a glycosidase (isomalto-dextranase) on the hydrolysis mechanism of the substrate binding (k(on), k(off), and K(d)) and the catalytic process (k(cat)), separately, by using a dextran-immobilized QCM in buffer solution. D266N, D198N, and D313N mutants, which are predicted as critical residues of the isomalto-dextranase hydrolytic activity, dramatically decreased the apparent enzyme activity. The D266N mutant, however, did not change the substrate binding ability (K(d)), and the D198N and D313N mutants largely increased K(d) values due to the increase of k(off) and/or the decrease of k(on) values, as well as the negatively small k(cat) values. From these results, we estimate the reaction mechanism, in which Asp266 acts as only a general acid in the catalytic process, Asp198 acts as both nucleophile in the catalytic process and binding the substrate, and Asp313 acts as only the substrate binding.  相似文献   
977.
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.  相似文献   
978.
We describe the clinical characterization, molecular analyses, and genetic mapping of a distinct genetic condition characterized by craniosynostosis, delayed closure of the fontanel, cranial defects, clavicular hypoplasia, anal and genitourinary malformations, and skin eruption. We have identified seven patients with this phenotype in four families from different geographic regions and ethnic backgrounds. This is an autosomal recessive condition that brings together apparently opposing pathophysiologic and developmental processes, including accelerated suture closure and delayed ossification. Selected candidate genes--including RUNX2, CBFB, MSX2, ALX4, TWIST1, and RECQL4--were screened for mutations, by direct sequencing of their coding regions, and for microdeletions, by fluorescent in situ hybridization. No mutations or microdeletions were detected in any of the genes analyzed. A genomewide screen yielded the maximum estimated LOD score of +2.38 for markers D22S283 and D22S274 on chromosome 22q12-q13. We hypothesize that the gene defect in this condition causes novel context-dependent dysregulation of multiple signaling pathways, including RUNX2, during osteoblast differentiation and craniofacial morphogenesis.  相似文献   
979.
980.
ATP, which serves as a mediator of intramacrophage signaling pathways through purinoceptors, is known to potentiate macrophage antimycobacterial activity. In this study we examined the effects of ATP in potentiating host resistance to Mycobacterium avium complex (MAC) infection in mice undergoing treatment with a drug regimen using clarithromycin and rifamycin and obtained the following findings. First, the administration of ATP in combination with the clarithromycin and rifamycin regimen accelerated bacterial elimination in MAC-infected mice without causing changes in the histopathological features or the mRNA expression of pro- or anti-inflammatory cytokines from those in the mice not given ATP. Second, ATP potentiated the anti-MAC bactericidal activity of macrophages cultivated in the presence of clarithromycin and rifamycin. This effect of ATP was closely related to intracellular Ca2+ mobilization and was specifically blocked by a cytosolic phospholipase A2 (cPLA2) inhibitor, arachidonyl trifluoromethylketone. Third, intramacrophage translocation of membranous arachidonic acid molecules to MAC-containing phagosomes was also specifically blocked by arachidonyl trifluoromethylketone. In the confocal microscopic observation of MAC-infected macrophages, ATP enhanced the intracellular translocation of cPLA2 into MAC-containing phagosomes. These findings suggest that ATP increases the host anti-MAC resistance by potentiating the antimycobacterial activity of host macrophages and that the cPLA2-dependent generation of arachidonic acid from the phagosomal membrane is essential for such a phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号