首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7966篇
  免费   492篇
  国内免费   1篇
  2022年   23篇
  2021年   84篇
  2020年   49篇
  2019年   65篇
  2018年   86篇
  2017年   85篇
  2016年   137篇
  2015年   233篇
  2014年   257篇
  2013年   526篇
  2012年   430篇
  2011年   436篇
  2010年   269篇
  2009年   265篇
  2008年   402篇
  2007年   394篇
  2006年   412篇
  2005年   417篇
  2004年   408篇
  2003年   379篇
  2002年   371篇
  2001年   240篇
  2000年   243篇
  1999年   204篇
  1998年   95篇
  1997年   88篇
  1996年   82篇
  1995年   86篇
  1994年   80篇
  1993年   87篇
  1992年   153篇
  1991年   127篇
  1990年   125篇
  1989年   138篇
  1988年   98篇
  1987年   109篇
  1986年   86篇
  1985年   74篇
  1984年   75篇
  1983年   55篇
  1982年   42篇
  1981年   56篇
  1980年   33篇
  1979年   52篇
  1978年   31篇
  1977年   40篇
  1976年   26篇
  1975年   27篇
  1974年   26篇
  1973年   21篇
排序方式: 共有8459条查询结果,搜索用时 218 毫秒
961.
The protein kinase Hsk1 is essential for DNA replication in Schizosaccharomyces pombe. It associates with Dfp1/Him1 to form an active complex equivalent to the Cdc7-Dbf4 protein kinase in Saccharomyces cerevisiae. Swi1 and Swi3 are subunits of the replication fork protection complex in S. pombe that is homologous to the Tof1-Csm3 complex in S. cerevisiae. The fork protection complex helps to preserve the integrity of stalled replication forks and is important for activation of the checkpoint protein kinase Cds1 in response to fork arrest. Here we describe physical and genetic interactions involving Swi1 and Hsk1-Dfp1/Him1. Dfp1/Him1 was identified in a yeast two-hybrid screen with Swi1. Hsk1 and Dfp1/Him1 both co-immunoprecipitate with Swi1. Swi1 is required for growth of a temperature-sensitive hsk1 (hsk1ts) mutant at its semi-permissive temperature. Hsk1ts cells accumulate Rad22 (Rad52 homologue) DNA repair foci at the permissive temperature, as previously observed in swi1 cells, indicating that abnormal single-stranded DNA regions form near the replication fork in hsk1ts cells. hsk1ts cells were also unable to properly delay S-phase progression in the presence of a DNA alkylating agent and were partially defective in mating type switching. These data suggest that Hsk1-Dfp1/Him1 and Swi1-Swi3 complexes have interrelated roles in stabilization of arrested replication forks.  相似文献   
962.
Sclerosteosis is an autosomal recessive disease that is characterized by overgrowth of bone tissue and is linked to mutations in the gene encoding the secreted protein SOST. Sclerosteosis shares remarkable similarities with "high bone mass" diseases caused by "gain-of-function" mutations in the LRP5 gene, which encodes a coreceptor for Wnt signaling proteins. We show here that SOST antagonizes Wnt signaling in Xenopus embryos and mammalian cells by binding to the extracellular domain of the Wnt coreceptors LRP5 and LRP6 and disrupting Wnt-induced Frizzled-LRP complex formation. Our findings suggest that SOST is an antagonist for Wnt signaling and that the loss of SOST function likely leads to the hyperactivation of Wnt signaling that underlies bone overgrowth seen in sclerosteosis patients.  相似文献   
963.
Anti-GD2 ganglioside antibodies could be a promising, novel therapeutic approach to the eradication of human small cell lung cancers, as anti-GD2 monoclonal antibodies (mAbs) induced apoptosis of small cell lung cancer cells in culture. In this study, we analyzed the mechanisms for the apoptosis of these cells by anti-GD2 mAbs and elucidated the mechanisms by which apoptosis signals were transduced via reduction in the phosphorylation levels of focal adhesion kinase (FAK) and the activation of a MAPK family member, p38, upon the antibody binding. Knock down of FAK resulted in apoptosis and p38 activation. The inhibition of p38 activity blocked antibody-induced apoptosis, indicating that p38 is involved in this process. Immunoprecipitation-immunoblotting analysis of immune precipitates with anti-FAK or anti-integrin antibodies using an anti-GD2 mAb revealed that GD2 could be precipitated with integrin and/or FAK. These results suggested that GD2, integrin, and FAK form a huge molecular complex across the plasma membrane. Taken together with the fact that GD2+ cells showed marked detachment from the plate during apoptosis, GD2+ small cell lung cancer cells seemed to undergo anoikis through the conformational changes of integrin molecules and subsequent FAK dephosphorylation.  相似文献   
964.
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.  相似文献   
965.
966.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, has been shown to be increased in bronchoalveolar lavage fluid after allergen challenge in asthmatic patients. Here, we examined S1P actions and their intracellular signalings in cultured human bronchial smooth muscle cells (BSMCs). Expression of mRNAs of three subtypes of S1P receptors, including S1P(1), S1P(2), and S1P(3), was detected in BSMCs, and exposure of the cells to S1P inhibited platelet-derived growth factor (PDGF)-induced migration and tumor necrosis factor-alpha-induced RANTES production. S1P also inhibited PDGF-induced Rac1 activation, and dominant negative Rac1 inhibited PDGF-induced migration. On the other hand, dominant negative Galpha(q) attenuated the S1P-induced inhibition of RANTES production. Finally, an S1P(2)-selective antagonist, JTE-013, suppressed the S1P-induced inhibition of migration response and RANTES production. These results suggest that S1P attenuates cell migration by inhibiting a Rac1-dependent signaling pathway and decreases RANTES production by stimulating a Galpha(q)-dependent mechanism both possibly through the S1P(2) receptors.  相似文献   
967.
To isolate thermostability-related amino acid residues of Streptomyces phospholipase D (PLD), we constructed a chimeral genes library between two highly homologous plds, which exhibited different thermostabilities, by an in vivo DNA shuffling method using Escherichia coli that has a mutation of a single-stranded DNA-binding protein gene. To confirm the location of the recombination site, we carried out the restriction mapping of 68 chimeral pld genes. The recombination sites were widely dispersed over the entire pld sequence. Moreover, we examined six chimeral PLDs by comparing their thermostabilities with those of parental PLDs. To identify a thermostability-related amino acid residue, we investigated the thermostability of chimera C that was the most thermolabile among the six chimeras. We identified the thermostability-related factor Gly-188, which is located in the alpha-7 helix of PLD from Streptomyces septatus TH-2 (TH-2PLD). TH-2PLD mutants, in which Gly-188 was substituted with Phe, Val or Trp, exhibited higher thermostabilities than that of the parental PLD. Gly-188 substituted with the Phe mutant, which was the most stable among the mutants, showed an enzyme activity almost the same as that of TH-2PLD as determine by kinetic analysis.  相似文献   
968.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   
969.
A quartz-crystal microbalance (QCM) technique was applied to analyze effects of site-directed mutagenesis of a glycosidase (isomalto-dextranase) on the hydrolysis mechanism of the substrate binding (k(on), k(off), and K(d)) and the catalytic process (k(cat)), separately, by using a dextran-immobilized QCM in buffer solution. D266N, D198N, and D313N mutants, which are predicted as critical residues of the isomalto-dextranase hydrolytic activity, dramatically decreased the apparent enzyme activity. The D266N mutant, however, did not change the substrate binding ability (K(d)), and the D198N and D313N mutants largely increased K(d) values due to the increase of k(off) and/or the decrease of k(on) values, as well as the negatively small k(cat) values. From these results, we estimate the reaction mechanism, in which Asp266 acts as only a general acid in the catalytic process, Asp198 acts as both nucleophile in the catalytic process and binding the substrate, and Asp313 acts as only the substrate binding.  相似文献   
970.
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号