首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7975篇
  免费   492篇
  国内免费   1篇
  2022年   32篇
  2021年   84篇
  2020年   49篇
  2019年   65篇
  2018年   86篇
  2017年   85篇
  2016年   137篇
  2015年   233篇
  2014年   257篇
  2013年   526篇
  2012年   430篇
  2011年   436篇
  2010年   269篇
  2009年   265篇
  2008年   402篇
  2007年   394篇
  2006年   412篇
  2005年   417篇
  2004年   408篇
  2003年   379篇
  2002年   371篇
  2001年   240篇
  2000年   243篇
  1999年   204篇
  1998年   95篇
  1997年   88篇
  1996年   82篇
  1995年   86篇
  1994年   80篇
  1993年   87篇
  1992年   153篇
  1991年   127篇
  1990年   125篇
  1989年   138篇
  1988年   98篇
  1987年   109篇
  1986年   86篇
  1985年   74篇
  1984年   75篇
  1983年   55篇
  1982年   42篇
  1981年   56篇
  1980年   33篇
  1979年   52篇
  1978年   31篇
  1977年   40篇
  1976年   26篇
  1975年   27篇
  1974年   26篇
  1973年   21篇
排序方式: 共有8468条查询结果,搜索用时 31 毫秒
921.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   
922.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   
923.
CYP2C9 is a major P450 2C enzyme, which hydroxylates about 16% of drugs that are in current clinical use and contributes to the metabolism of a number of clinically important substrate drugs such as warfarin. Ethnic differences in the genetic variation of CYP2C9 have been reported, and might be related to the frequencies of adverse reactions to drugs metabolized by CYP2C9 in different ethnic groups. In the present study, ethnic differences in the CYP2C9*2 and CYP2C9*3 allele distribution in Japanese and Israeli populations were evaluated using a newly developed oligonucleotide based DNA array (OligoArray(R)). The population studied consisted of 147 Japanese and 388 Israeli donors (100 Ashkenazi Jews, 99 Yemenite Jews, 100 Moroccan Jews and 89 Libyan Jews). The CYP2C9*2 [Arg144Cys (416 C>T), exon 3] and CYP2C9*3 [Ile359Leu (1061 A>C), exon 7] genotypes were determined using an OligoArray(R). The accuracy of genotyping by the OligoArray(R) was verified by the fluorescent dye-terminator cycle sequencing method. A Hardy-Weinberg test indicated equilibrium (chi(2)<3.84 is Hardy-Weinberg) in all populations. The CYP2C9*2 genotype (CC/CT+TT) was absent in Japanese (1/0) (OR 0.02), and its frequency was significant in Libyan Jews (0.697/0.303) (OR 2.13; 95% CI 1.07-4.24) compared with Ashkenazi Jews (0.83/0.17), Yemenite Jews (0.899/0.101), and Moroccan Jews (0.81/0.19). The frequencies of CYP2C9*3 genotype (AA/AC+CC) was significantly lower in Japanese (0.986/0.014) (OR 0.08), and was higher in Libyan Jews (0.652/0.348) (OR 3.03; 95% CI 1.5-6.1) and Moroccan Jews (0.77/0.23) (OR 1.69; 95% CI 0.62-3.48) compared with those in Ashkenazi Jews (0.85/0.15) and Yemenite Jews (0.849/0.151). Thus, the CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) variants were rare in the Japanese population, and showed different frequencies in the four Jewish ethnic groups examined.  相似文献   
924.
We previously reported for the first time that D-aspartate (D-Asp) is biosynthesized by cultured mammalian cells such as pheochromocytoma (PC)12 cells and its subclone MPT1 (FEBS Lett. 434 (1998) 231, Arch. Biochem. Biophys. 404 (2002) 92). We speculated that D-Asp levels in the intra- and extracellular spaces of the cultured cells are maintained in a dynamic state of homeostasis. To test this here, we utilized a novel and potent L-Glu transporter inhibitor, TFB-TBOA. This inhibitor proved to be a genuine nontransportable blocker of the transporter even during long periods of culture. Use of this inhibitor with MPT1 cells confirmed that D-Asp levels are in a dynamic steady state where it is constantly released into the extracellular space by a yet undefined mechanism as well as being constantly and intensively taken up by the cells via the L-Glu transporter. We estimated the rate with which D-Asp is constitutively released from MPT1 cells is approx. 3.8 pmol/h/1x10(5) cells.  相似文献   
925.
The thyroid hormone-disrupting activity of tetrabromobisphenol A (TBBPA), a flame retardant, and related compounds was examined. TBBPA, tetrachlorobisphenol A (TCBPA), tetramethylbisphenol A (TMBPA) and 3,3'-dimethylbisphenol A (DMBPA) markedly inhibited the binding of triiodothyronine (T3; 1 x 10(-10) M) to thyroid hormone receptor in the concentration range of 1 x 10(-7)-1 x 10(-4) M, while bisphenol A and 2,2-diphenylpropane were inactive. TBBPA, TCBPA, TMBPA and DMBPA did not exhibit thyroid hormonal activity in a thyroid hormone-responsive reporter assay using a Chinese hamster ovary cell line (CHO-K1) transfected with thyroid hormone receptor alpha1 or beta1, but TBBPA and TCBPA showed significant anti-thyroid hormone effects on the activity of T3 (1 x 10(-8) M) in the concentration range of 3 x 10(-6) - 5 x 10(-5) M. The thyroid hormone-disrupting activity of TBBPA was also examined in terms of the effect on amphibian metamorphosis stimulated by thyroid hormone. TBBPA in the concentration range of 1 x 10(-8) to 1 x 10(-6) M showed suppressive action on T3 (5 x 10(-8) M)-enhancement of Rana rugosa tadpole tail shortening. These facts suggest that TBBPA, TCBPA, TMBPA and DMBPA can act as thyroid hormone-disrupting agents.  相似文献   
926.
Connexin (Cx) genes exert negative growth effects on tumor cells with certain cell specificity. We have recently reported that Cx32 acts as a tumor suppressor gene in renal cancer cells due to the inhibition of Src-dependent signaling. In line with the previous study, here we examined if a Src family inhibitor (PP1) could potentiate tumor-suppressive effect of Cx32 in Caki-2 cell from human renal cell carcinoma. In order to clarify the potentialization of PP1, using Cx32-transfected Caki-2 cells and mock-transfected Caki-2 cells, we estimated difference in cytotoxic effect of PP1 on the two cell clones in vitro as well as in vivo. PP1 showed more cytotoxic effect on Caki-2 cells having Cx32 positive expression than that of Cx32 negative expression at lower doses. This potentialization was also observed in xenograft model of nude mice. The potentialization of the effect mainly depended on the induction of apoptosis but not the control of cell growth. In conjugation with this event, the reduction of anti-apoptotic molecules (Bcl-2 and Bcl-xL) was caused by the combination of Cx32 expression and PP1 treatment in Caki-2 cells. These results suggest that PP1 potentiates tumor-suppressive effect of connexin 32 gene in renal cancer cells through the reduction of anti-apoptotic molecules.  相似文献   
927.
The host-selective toxin victorin is produced by Cochliobolus victoriae, the causal agent of victoria blight of oats. Victorin has been shown to bind to the P protein of the glycine decarboxylase complex (GDC) in mitochondria, and induce defense-related responses such as phytoalexin synthesis, extracellular alkalization and programmed cell death. However, evidence demonstrating that the GDC plays a critical role in the onset of cell death is still lacking, and the role of defense-like responses in the pathogenicity has yet to be elucidated. Here, cytofluorimetric analyses, using the fluorescein (VicFluor) or bovine serum albumin-fluorescein derivative of victorin (VicBSA), demonstrated that victorin-induced cell death occurs before these conjugates traverse the plasma membrane. As with native victorin, VicBSA clearly elicits apoptosis-like cell death, production of phytoalexin, extracellular alkalization, and generation of nitric oxide and reactive oxygen intermediates. These results suggest that the initial recognition of victorin takes place on the cell surface, not in mitochondria, and leads to the activation of a battery of victorin-induced responses. Pharmacological studies showed that extracellular alkalization is the essential regulator for both victorin- and VicBSA-induced cellular responses. We propose a model where victorin may kill the host cell by activating an HR-like response, independent of the binding to the GDC, through ion fluxes across the plasma membrane.  相似文献   
928.
Glucosides of trans-zeatin occur widely in plant tissues, formed either by O-glucosylation of the hydroxylated side chain or N-glucosylation of the purine ring structure. O-Glucosylation is stereo-specific: the O-glucosyltransferase encoded by the Phaseolus lunatus ZOG1 gene has high affinity for trans-zeatin as the substrate, whereas the enzyme encoded by the maize (Zea mays) cisZOG1 gene prefers cis-zeatin. Here we show that hydroxylated derivatives of benzyladenine (topolins) are also substrates of ZOG1 and cisZOG1. The m-OH and o-OH derivatives are the preferred substrate of ZOG1 and cisZOG1, respectively. Among the hydroxylated derivatives of thidiazuron tested, the only enzyme/substrate combination resulting in conversion was cisZOG1/(o-OH) thidiazuron. The abilities of these cytokinins to serve as substrates to the glucosyltransferases were in a large part correlated with their biological activities in the P. lunatus callus bioassay, indicating that there may be similarities between cytokinin-binding sites on the enzymes and cytokinin receptors. Further support for this interpretation is provided by cytokinin recognition studies involving the Arabidopsis (Arabidopsis thaliana) CRE1/WOL/AHK4 and maize ZmHK1 receptors. The AHK4 receptor responded to trans-zeatin and m-topolin, while the ZmHK1 receptor responded also to cis-zeatin and o-topolin. Three-dimensional molecular models of the substrates were applied to explain the results.  相似文献   
929.
The IL1R is composed of two kinds of molecule, type I (IL1R I) and type II (IL1R2). IL1R1 contributes to IL-1 signaling, whereas the IL1R2 has no signaling property and acts as a decoy for IL-1. In this study, we developed a bovine IL1R2-specific sandwich ELISA to examine the sIL1R2 concentration in serum and milk from dairy cows. The concentration of colostral IL-1beta was examined to estimate the correlation to sIL1R2. The results showed that the sIL1R2 concentration in sera and milk changes with the stages of lactation. The serum sIL1R2 concentrations were 5.56+/-0.69 ng/ml (colostrum), 3.14+/-0.72 ng/ml (the early stage of lactation) and 5.76+/-1.25 ng/ml (the late stage of lactation). The milk sIL1R2 concentrations were 1.83+/-0.47 ng/ml (colostrum), 0.73+/-0.22 ng/ml (the early stage of lactation) and 2.92+/-0.56 ng/ml (the late stage of lactation). The concentrations of IL1R2 in sera and milk were significantly higher at the late stage of lactation and colostrum than that of the early stage of lactation. The reduction rates of sIL1R2 levels from the colostrum to the early stage of lactation were 43.6% (serum) and 61% (whey). IL-1beta was detected in all the colostrum (995.9+/-346.6 ng/ml). Significant correlation was observed between the levels of colostral IL-1beta and IL1R2 (r=0.75).  相似文献   
930.
By screening differentially expressed genes in mouse embryonic stem (ES) cells by subtractive hybridization, we identified three conserved but uncharacterized genes encoding bromodomain containing 3 (BRD3), protein lysine methyltransferase (PLM), and kelch domain containing 2 (KLHDC2), which were downregulated during endothelial differentiation. An RNA blot study showed that these genes were markedly expressed in undifferentiated ES cells, whereas the expression was reduced upon endothelial differentiation; a study of mouse endothelium showed a significant reduction in the expression of BRD3. A study of human BRD3, located on chromosome 9 at q34, a region susceptible to genomic rearrangement, showed an altered expression in 4 of 12 patients with bladder cancer, compared with adjacent noncancerous tissues. Taken together with the result of siRNA inhibition showing the positive regulation of cell proliferation by BRD3, it is suggested that this molecule plays a role in allowing cells to enter the proliferative phase of the angiogenic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号