首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4634篇
  免费   289篇
  2022年   23篇
  2021年   47篇
  2020年   24篇
  2019年   41篇
  2018年   50篇
  2017年   54篇
  2016年   89篇
  2015年   136篇
  2014年   133篇
  2013年   292篇
  2012年   287篇
  2011年   294篇
  2010年   182篇
  2009年   167篇
  2008年   293篇
  2007年   247篇
  2006年   278篇
  2005年   278篇
  2004年   274篇
  2003年   243篇
  2002年   253篇
  2001年   111篇
  2000年   93篇
  1999年   90篇
  1998年   57篇
  1997年   59篇
  1996年   59篇
  1995年   58篇
  1994年   46篇
  1993年   41篇
  1992年   62篇
  1991年   62篇
  1990年   52篇
  1989年   67篇
  1988年   47篇
  1987年   27篇
  1986年   38篇
  1985年   20篇
  1984年   29篇
  1983年   16篇
  1982年   21篇
  1981年   29篇
  1980年   15篇
  1979年   11篇
  1978年   20篇
  1977年   9篇
  1976年   13篇
  1975年   20篇
  1974年   8篇
  1971年   9篇
排序方式: 共有4923条查询结果,搜索用时 203 毫秒
181.
The increase in the mass of adipose tissue during the development of obesity can arise through an increase in cell size, an increase in cell number, or both. Here we show that long term maintenance of C57BL/6 mice on a high fat diet (for approximately 25 weeks) induces an initial increase in adipocyte size followed by an increase in adipocyte number in white adipose tissue. The latter effect was found to be accompanied by up-regulation of expression of the gene for the F-box protein Skp2 as well as by downregulation of the cyclin-dependent kinase inhibitor p27(Kip1), a principal target of the SCF(Skp2) ubiquitin ligase, in white adipose tissue. Ablation of Skp2 protected mice from the development of obesity induced either by a high fat diet or by the lethal yellow agouti (A(y)) mutation, and this protective action was due to inhibition of the increase in adipocyte number without an effect on adipocyte hypertrophy. The reduction in the number of adipocyte caused by Skp2 ablation also inhibited the development of obesity-related insulin resistance in the A(y) mutant mice, although the reduced number of beta cells and reduced level of insulin secretion in Skp2-deficient mice resulted in glucose intolerance. Our observations thus indicate that Skp2 controls adipocyte proliferation during the development of obesity.  相似文献   
182.
Objective: The etiology of some obesity may involve adipocyte hyperplasia. However, the role of adipocyte number in establishing adipose mass is unclear. Cyclin‐dependent kinase inhibitor p27 regulates activity of cyclin/cyclin‐dependent kinase complexes responsible for cell cycle progression. This protein is critical for establishing adult adipocyte number, and p27 knockout increases adult adipocyte number. The SCF (for Skp1‐Cullin‐F‐box protein) complex targets proteins such as p27 for ubiquitin‐proteosome degradation; the F box protein S phase kinase‐associated protein 2 (Skp2), a component of the SCF complex, specifically recognizes p27 for degradation. We used Skp2 knockout (Skp2?/?) mice to test whether Skp2 loss decreased adipose mass and adipocyte number. Research Methods and Procedures: We measured body weight, adipose mass, adipocyte diameter and number, and glucose tolerance in wild‐type (WT), Skp2?/?, and p27?/?Skp2?/? mice. Mouse embryo fibroblasts (MEFs) from WT and Skp2?/? fetuses were differentiated to determine whether Skp2 directly affected adipogenesis. Results: Skp2?/? mice had a 50% decrease in both subcutaneous and visceral fat pad mass and adipocyte number; these decreases exceeded those in body weight, kidney, or muscle. To test the hypothesis that Skp2 effects on adipocyte number involved p27 accumulation, we used p27?/?Skp2?/? double knockout mice. The Skp2?/? decrements in adipocyte number and fat pad mass were totally reversed in p27?/?Skp2?/? mice. Adipogenesis was inhibited in MEFs from Skp2?/? vs. WT mice, and this inhibition was absent in MEFs from p27?/?Skp2?/? mice. Discussion: Our results indicate that Skp2 regulates adipogenesis and ultimate adipocyte number in vivo; thus, Skp2 may contribute to obesity involving adipocyte hyperplasia.  相似文献   
183.
Hepatocellular carcinoma (HCC) in a liver with advanced-stage chronic hepatitis C (CHC) is induced by hepatitis C virus, which chronically infects about 170 million people worldwide. To elucidate the associations between gene groups in hepatocellular carcinogenesis, we analyzed the profiles of the genes characteristically expressed in the CHC and HCC cell stages by a statistical method for inferring the network between gene systems based on the graphical Gaussian model. A systematic evaluation of the inferred network in terms of the biological knowledge revealed that the inferred network was strongly involved in the known gene-gene interactions with high significance Open image in new window , and that the clusters characterized by different cancer-related responses were associated with those of the gene groups related to metabolic pathways and morphological events. Although some relationships in the network remain to be interpreted, the analyses revealed a snapshot of the orchestrated expression of cancer-related groups and some pathways related with metabolisms and morphological events in hepatocellular carcinogenesis, and thus provide possible clues on the disease mechanism and insights that address the gap between molecular and clinical assessments.  相似文献   
184.
185.
Transitory perturbations in the level of cytosolic Ca2+ are well known to be involved in numerous cell signaling pathways in both plant and animal systems. However, not much is known at present about the molecular identity of plant plasma membrane Ca2+ conducting ion channels or their specific roles in signal transduction cascades. A recent study employing genetic approaches as well as patch clamp electrophysiological analysis of channel currents has provided the first such direct evidence linking a specific gene product with inward Ca2+ currents across the plant cell membrane. This work identified Ca2+ permeation through (Arabidopsis) cyclic nucleotide gated channel isoform 2 (CNGC2) as contributing to the plant innate immunity signaling cascade initiated upon perception of a pathogen. Here, we expand on the implications of CNGC2 mediated cytosolic Ca2+ elevations associated with plant cell response to pathogen recognition, and propose some additional steps that may be involved in the innate immunity signal cascade.Key Words: calcium, CNGC, hypersensitive response, nitric oxide, plant innate immunity, plant ion channel, reactive oxygen species  相似文献   
186.
This study investigated the age-dependent changes in the number of BrdU- and TUNEL-positive cells in murine gingival tissue and submandibular gland, and compared the findings with those in other tissues and organs. The cell proliferative activity was decreased after 20 weeks of age in epithelial cells of the gingiva, tongue, buccal mucosa and skin. A decreased cell proliferative activity was also associated with aging in the liver and kidney parenchymal cells. Meanwhile, cell death showed peculiar changes in gingival subepithelial tissue, and mucous and serous acini of the submandibular gland. An increase of TUNEL-positive cells was demonstrated in gingival subepithelial tissue after 20-week-old of age. A significant increase of TUNEL-positive cells was also found in the mucous acinar cells in the 20-week-old mice and in the serous acini after 20 weeks. The fluctuation in the number of TUNEL-positive cells in the subepithelial tissue of the skin, and BrdU- and TUNEL-positive staining ratios in the liver was smaller than that in other tissue and organs throughout life. This study may provide useful information for better understanding the influence of aging on the functional alteration that occurs in the gingival tissue and submandibular gland of the elderly.  相似文献   
187.
We cloned a new cysteine proteinase of wheat seed origin, which hydrolyzed the storage protein gliadin almost specifically, and was named gliadain. Gliadain mRNA was expressed 1 day after the start of seed imbibition, and showed a gradual increase thereafter. Gliadain expression was suppressed when uniconazol, a gibberellin synthesis inhibitor, was added to germinating seeds. Histochemical detection with anti-gliadain serum indicated that gliadain was present in the aleurone layer and also that its expression intensity increased in sites nearer the embryo. The enzymological characteristics of gliadain were investigated using recombinant glutathione S-transferase (GST)-progliadain fusion protein produced in Escherichia coli. The GST-progliadain almost specifically digested gliadin into low molecular mass peptides. These results indicate that gliadain is produced via gibberellin-mediated gene activation in aleurone cells and secreted into the endosperm to digest its storage proteins. Enzymologically, the GST-progliadain hydrolyzed benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin (Z-Phe-Arg-NH(2)-Mec) at K(m) = 9.5 microm, which is equivalent to the K(m) value for hydrolysis of this substrate by cathepsin L. Hydrolysis was inhibited by two wheat cystatins, WC1 and WC4, with IC(50) values of 1.7 x 10(-8) and 5.0 x 10(-8) m, respectively. These values are comparable with those found for GST-progliadain inhibition by E-64 and egg-white cystatin, and are consistent with the possibility that, in germinating wheat seeds, gliadain is under the control of intrinsic cystatins.  相似文献   
188.
Sleep and Biological Rhythms - Idiopathic hypersomnia (IH) is a rare sleep disorder characterized by excessive daytime sleepiness, great difficulty upon awakening, and prolonged sleep time. In...  相似文献   
189.
In chemical biology, the elucidation of chemical target is crucial for successful drug development. Because MHC class I molecules present peptides from intracellular damaged proteins, it might be possible to identify targets of a chemical by analyzing peptide sequences on MHC class I. Therefore, we treated cells with the autophagy-inducing chemical TMD-457 and identified the peptides presented on MHC class I. Many of the peptides were derived from molecules involved in ER trafficking and ER stress, which were confirmed by morphological and biochemical analyses. Therefore, our results demonstrate that analyzing MHC class I peptides is useful for the detection of chemical targets.  相似文献   
190.
Insufficient sleep and irregular sleep/wake rhythm are common problems among university students. We investigated the effect of sleep/wake rhythm and excessive daytime sleepiness (EDS) on the cortical oxygenation as measured by near-infrared spectroscopy (NIRS) and cognitive performance in university students. Peak- and integral values by a word fluency task were measured with NIRS. EDS was evaluated by the Epworth sleepiness scale (ESS), and performance function was evaluated using N-back task. Peak cerebral oxygenation was significantly correlated with ESS, bedtime, wake-up time, and median time of sleep. Accuracy on 2-back task was significantly correlated with integral value. Peak- and integral values were significantly lower, and bedtime and median time of sleep were significantly delayed in the EDS group than in the non-EDS group. EDS accompanied by delayed sleep/wake rhythm and short sleep duration may play an important role in decreasing daytime brain activity and cognitive performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号