首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1469篇
  免费   92篇
  国内免费   1篇
  2022年   7篇
  2021年   12篇
  2019年   15篇
  2018年   21篇
  2017年   14篇
  2016年   27篇
  2015年   33篇
  2014年   43篇
  2013年   59篇
  2012年   80篇
  2011年   75篇
  2010年   47篇
  2009年   47篇
  2008年   53篇
  2007年   86篇
  2006年   78篇
  2005年   67篇
  2004年   58篇
  2003年   54篇
  2002年   69篇
  2001年   63篇
  2000年   51篇
  1999年   56篇
  1998年   23篇
  1997年   18篇
  1996年   18篇
  1995年   18篇
  1994年   13篇
  1993年   16篇
  1992年   31篇
  1991年   15篇
  1990年   24篇
  1989年   32篇
  1988年   27篇
  1987年   17篇
  1986年   23篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1981年   15篇
  1980年   10篇
  1979年   12篇
  1977年   10篇
  1975年   9篇
  1974年   9篇
  1973年   11篇
  1972年   11篇
  1969年   9篇
  1968年   8篇
  1966年   6篇
排序方式: 共有1562条查询结果,搜索用时 15 毫秒
991.
A multiplex PCR method was established for the rapid identification of Anisakis simplex sensu stricto, A. pegreffii, A. physeteris, Pseudoterranova decipiens, Contracaecum osculatum and Hysterothylacium aduncum. The sequence alignment of the internal transcribed spacer 1 region (ITS-1) between A. simplex s. str. and A. pegreffii showed a high degree of similarity, but only two C-T transitions were observed. To differentiate A. simplex s. str. from A. pegreffii, an intentional mismatch primer with an artificial mismatched base at the second base from the primer 3' end was constructed. This intentional mismatch primer, which produced a PCR band only from A. pegreffii DNA, was able to differentiate the two morphologically indistinguishable sibling species of A. simplex. Specific forward primers for other anisakid species were also designed based on the nucleotide sequences of the ITS region. The multiplex PCR using these primers yielded distinct PCR products for each of the anisakid nematodes. The multiplex PCR established in this study would be a useful tool for identifying anisakid nematodes rapidly and accurately.  相似文献   
992.
Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258-259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 x 10(6) variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use pi-pi stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 x 10(6) M(-1) at 25 degrees C and the resulting binding free energy change at 25 degrees C (DeltaG degrees (25)) was -8.2 kcal mol(-1). The binding of the peptide to AP2 was also analyzed and the resulting binding constant and DeltaG degrees (25) were about 4.2 x 10(4) M(-1) and -6.3 kcal mol(-1), respectively. The difference in the binding free energy changes (DeltaDeltaG degrees (25)) of 1.9 kcal mol(-1) was comparable to the values reported in other systems and was considered a consequence of the loss of pi-pi stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.  相似文献   
993.
Conformational control of protein kinases is an important way of modulating catalytic activity. Crystal structures of the C (catalytic) subunit of PKA (protein kinase A) in complex with physiological inhibitors and/or nucleotides suggest a highly dynamic process switching between open and more closed conformations. To investigate the underlying molecular mechanisms, SPR (surface plasmon resonance) was used for detailed binding analyses of two physiological PKA inhibitors, PKI (heat-stable protein kinase inhibitor) and a truncated form of the R (regulatory) subunit (RIalpha 92-260), in the presence of various concentrations of metals and nucleotides. Interestingly, it could be demonstrated that high-affinity binding of each pseudosubstrate inhibitor was dependent only on the concentration of divalent metal ions. At low micromolar concentrations of Mg2+ with PKI, transient interaction kinetics with fast on- and off-rates were observed, whereas at high Mg2+ concentrations the off-rate was slowed down by a factor of 200. This effect could be attributed to the second, low-affinity metal-binding site in the C subunit. In contrast, when investigating the interaction of RIalpha 92-260 with the C subunit under the same conditions, it was shown that the association rate rather than the dissociation rate was influenced by the presence of high concentrations of Mg2+. A model is presented, where the high-affinity interaction of the C subunit with pseudosubstrate inhibitors (RIalpha and PKI) is dependent on the closed, catalytically inactive conformation induced by the binding of a nucleotide complex where both of the metal-binding sites are occupied.  相似文献   
994.
Initiation of chromosomal replication and its cell cycle-coordinated regulation bear crucial and fundamental mechanisms in most cellular organisms. Escherichia coli DnaA protein forms a homomultimeric complex with the replication origin (oriC). ATP-DnaA multimers unwind the duplex within the oriC unwinding element (DUE). In this study, structural analyses suggested that several residues exposed in the central pore of the putative structure of DnaA multimers could be important for unwinding. Using mutation analyses, we found that, of these candidate residues, DnaA Val-211 and Arg-245 are prerequisites for initiation in vivo and in vitro. Whereas DnaA V211A and R245A proteins retained normal affinities for ATP/ADP and DNA and activity for the ATP-specific conformational change of the initiation complex in vitro, oriC complexes of these mutant proteins were inactive in DUE unwinding and in binding to the single-stranded DUE. Unlike oriC complexes including ADP-DnaA or the mutant DnaA, ATP-DnaA-oriC complexes specifically bound the upper strand of single-stranded DUE. Specific T-rich sequences within the strand were required for binding. The corresponding conserved residues of the DnaA ortholog in Thermotoga maritima, an ancient eubacterium, were also required for DUE unwinding, consistent with the idea that the mechanism and regulation for DUE unwinding can be evolutionarily conserved. These findings provide novel insights into mechanisms for pore-mediated origin unwinding, ATP/ADP-dependent regulation, and helicase loading of the initiation complex.  相似文献   
995.
The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the beta clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25 degrees C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25 degrees C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42 degrees C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25 degrees C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25 degrees C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway.  相似文献   
996.
The application of adiabatic polarization-transfer experiments to resonance assignment in solid, uniformly 13C-15N-labelled polypeptides is demonstrated for the cyclic decapeptide antamanide. A homonuclear correlation experiment employing the DREAM sequence for adiabatic dipolar transfer yields a complete assignment of the C and aliphatic side-chain 13C resonances to amino acid types. The same information can be obtained from a TOBSY experiment using the recently introduced P91 12 TOBSY sequence, which employs the J couplings as a transfer mechanism. A comparison of the two methods is presented. Except for some aromatic phenylalanine resonances, a complete sequence-specific assignment of the 13C and 15N resonances in antamanide is achieved by a series of selective or broadband adiabatic triple-resonance experiments. Heteronuclear transfer by adiabatic-passage Hartmann–Hahn cross polarization is combined with adiabatic homonuclear transfer by the DREAM and rotational-resonance tickling sequences into two- and three-dimensional experiments. The performance of these experiments is evaluated quantitatively.  相似文献   
997.
The DnaA protein, which initiates chromosomal replication in Escherichia coli, is negatively regulated by both the sliding clamp of DNA polymerase III holoenzyme and the IdaB protein. We have found that, when the amount of minichromosome is limited in an in vitro replication system, minichromosomal replication-stimulated hydrolysis of DnaA-bound ATP yields the ADP-bound inactive form. The number of sliding clamps formed during replication was at least five per minichromosome, which is 2.7-fold higher than the number formed during incubation without replication. These results support the notion that coupling of DnaA-ATP hydrolysis to DNA replication is the outcome of enhanced clamp formation. We have also found that the amino acid substitution R334H in DnaA severely inhibits the hydrolysis of bound ATP in vitro. Whereas ATP bound to wild-type DnaA is hydrolysed in a DNA-dependent intrinsic manner or in a sliding clamp-dependent manner, ATP bound to DnaA R334H protein was resistant to hydrolysis under the same conditions. This arginine residue may be located in the vicinity where ATP binds, and therefore may play an essential role in ATP hydrolysis. This residue is highly conserved among DnaA homologues and also in the Box VIII motif of the AAA+ protein family.  相似文献   
998.
A regulatory loop between the fibroblast growth factors FGF-8 and FGF-10 plays a key role in limb initiation and AER induction in vertebrate embryos. Here, we show that three WNT factors signaling through beta-catenin act as key regulators of the FGF-8/FGF-10 loop. The Wnt-2b gene is expressed in the intermediate mesoderm and the lateral plate mesoderm in the presumptive chick forelimb region. Cells expressing Wnt-2b are able to induce Fgf-10 and generate an extra limb when implanted into the flank. In the presumptive hindlimb region, another Wnt gene, Wnt-8c, controls Fgf-10 expression, and is also capable of inducing ectopic limb formation in the flank. Finally, we also show that the induction of Fgf-8 in the limb ectoderm by FGF-10 is mediated by the induction of Wnt-3a. Thus, three WNT signals mediated by beta-catenin control both limb initiation and AER induction in the vertebrate embryo.  相似文献   
999.
1000.
Six4 is a member of the Six family genes, homologues of Drosophila melanogaster sine oculis. The gene is thought to be involved in neurogenesis, myogenesis, and development of other organs, based on its specific expression in certain neuronal cells of the developing embryo and in adult skeletal muscles. To elucidate the biological roles of Six4, we generated Six4-deficient mice by replacing the Six homologous region and homeobox by the beta-galactosidase gene. 5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining of the heterozygous mutant embryos revealed expression of Six4 in cranial and dorsal root ganglia, somites, otic and nasal placodes, branchial arches, Rathke's pouch, apical ectodermal ridges of limb buds, and mesonephros. The expression pattern was similar to that of Six1 except at the early stage of embryonic day 8.5. Six4-deficient mice were born according to the Mendelian rule with normal gross appearance and were fertile. No hearing defects were detected. Six4-deficient embryos showed no morphological abnormalities, and the expression patterns of several molecular markers, e.g., myogenin and NeuroD3 (neurogenin1), were normal. Our results indicate that Six4 is not essential for mouse embryogenesis and suggest that other members of the Six family seem to compensate for the loss of Six4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号