首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   6篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1999年   3篇
  1982年   1篇
排序方式: 共有53条查询结果,搜索用时 93 毫秒
41.
We have recently identified a DNA-binding protein (DBP) from the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) which can destabilize double-stranded DNA (V. S. Mikhailov, A. L. Mikhailova, M. Iwanaga, S. Gomi, and S. Maeda, J. Virol. 72:3107–3116, 1998). DBP was found to be an early gene product that was not present in budded or occlusion-derived virions. In order to characterize the localization of DBP during viral replication, BmNPV-infected BmN cells were examined by immunostaining and confocal microscopy with DBP antibodies. DBP first appeared as diffuse nuclear staining at 4 to 6 h postinfection (p.i.) and then localized to several specific foci within the nucleus at 6 to 8 h p.i. After the onset of viral DNA replication at around 8 h p.i., these foci began to enlarge and eventually occupied more than half of the nucleus by 14 h p.i. After the termination of viral DNA replication at about 20 h p.i., the DBP-stained regions appeared to break down into approximately 100 small foci within the nucleus. At 8 h p.i., the distribution of DBP as well as that of IE-1 or LEF-3 (two proteins involved in baculovirus DNA replication) overlapped well with that of DNA replication sites labeled with bromodeoxyuridine incorporation. Double-staining experiments with IE-1 and DBP or IE-1 and LEF-3 further confirmed that, between 8 and 14 h p.i., the distribution of IE-1 and LEF-3 overlapped with that of DBP. However, IE-1 localized to the specific foci prior to DBP or LEF-3 at 4 h p.i. In the presence of aphidicolin, an inhibitor of DNA synthesis, immature foci containing IE-1, LEF-3, and DBP were observed by 8 h p.i. However, the subsequent enlargement of these foci was completely suppressed, suggesting that the enlargement depended upon viral DNA replication. At 4 h p.i., the number of IE-1 foci correlated with the multiplicity of infection (MOI) between 0.4 and 10. At higher MOIs (e.g., 50), the number of foci plateaued at around 15. These results suggested that there are about 15 preexisting sites per nucleus which are associated with the initiation of viral DNA replication and assembly of viral DNA replication factories.  相似文献   
42.
The essential trace element zinc is important for all living organisms. Zinc functions not only as a nutritional factor, but also as a second messenger. However, the effects of intracellular zinc on the B cell-receptor (BCR) signaling pathway remain poorly understood. Here, we present data indicating that the increase in intracellular zinc level induced by ZIP9/SLC39A9 (a ZIP Zrt-/Irt-like protein) plays an important role in the activation of Akt and Erk in response to BCR activation. In DT40 cells, the enhancement of Akt and Erk phosphorylation following BCR activation requires intracellular zinc. To clarify this event, we used chicken ZnT5/6/7-gene-triple-knockout DT40 (TKO) cells and chicken Zip9-knockout DT40 (cZip9KO) cells. The levels of Akt and ERK phosphorylation significantly decreased in cZip9KO cells. In addition, the enzymatic activity of protein tyrosine phosphatase (PTPase) increased in cZip9KO cells. These biochemical events were restored by overexpressing the human Zip9 (hZip9) gene. Moreover, we found that the increase in intracellular zinc level depends on the expression of ZIP9. This observation is in agreement with the increased levels of Akt and Erk phosphorylation and the inhibition of total PTPase activity. We concluded that ZIP9 regulates cytosolic zinc level, resulting in the enhancement of Akt and Erk phosphorylation. Our observations provide new mechanistic insights into the BCR signaling pathway underlying the regulation of intracellular zinc level by ZIP9 in response to the BCR activation.  相似文献   
43.
Renal proximal tubular epithelium can regenerate after various insults. To examine whether the tubular repair process is regulated by surrounding peritubular capillaries, we established an in vitro human tubulogenesis model that mimics in vivo tubular regeneration after injury. In this model, HGF, a potent renotropic factor, dose dependently induced tubular structures in human renal proximal tubular epithelial cells cultured in gels. Consistent with regenerating tubular cells after injury, HGF-induced tubular structures expressed a developmental gene, Pax-2, and a mesenchymal marker, vimentin, and formed a lumen with aquaporin-1 expression. Electron microscopic analysis showed the presence of microvilli on the apical site of the lumen, suggesting that these structures are morphologically equivalent to renal tubules in vivo. When cocultured with human umbilical vein endothelial cells (HUVEC), HGF-induced tubular formation was significantly enhanced. This could not be reproduced by the addition of VEGF, basic FGF, or PDGF. Protein array revealed that HUVEC produced various matrix metalloproteinases (MMPs). The stimulatory effects of coculture with HUVEC or HUVEC-derived conditional medium were almost completely abolished by addition of the tissue inhibitor of metalloproteinase (TIMP)-1 or TIMP-2. These data suggest that endothelial cell-derived factors including MMPs play a critical role in tubulogenesis and imply a potential role of peritubular capillary endothelium as a source of factor(s) required for tubular recovery after injury.  相似文献   
44.
45.
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.  相似文献   
46.
An ATX1 homologue of 503 bp length was cloned from a rat cDNA library, and the deduced protein from the cDNA was found to contain 68 amino acids with a predicted molecular mass of 7.2 kDa. The rat ATX1 homologue protein (Rah1p), which shows 35%, 38%, and 89% identities with Atx1p, CUC-1, and HAH1, respectively, conserves both the MTCXXC copper-binding site in the N terminus and the KTGK lysine-rich region in the C terminus. In Northern blot analysis, rah1 mRNA was found to be expressed at high levels in the liver, small intestine, and testis. Expression of rah1 cDNA complemented a null atx1 mutant strain in yeast. Thus, Rah1p was concluded to be a functional copper chaperone.  相似文献   
47.
In the 21st century, there has been a dramatic worldwide increase in the prevalence of metabolic syndromes, including diabetes mellitus (DM). Several synthetic pharmaceutical agents have been developed and used for the treatment of type-2 DM; however, these compounds have several problems such as side effects, hypoglycemia, and weight gain. Therefore, new drugs are required for DM therapy. We have proposed that some vanadyl complexes function as potent insulin-mimetic and antidiabetic agents in type-1 and type-2 DM animal models. In this article, we review the possible action mechanism of insulin-mimetic and antidiabetic vanadyl complexes, focusing on a recently proposed complex, bis(allixinato)oxovanadium(IV), with respect to the insulin-signaling pathway in cultured adipocytes.  相似文献   
48.
Polo kinases play critical roles for proper M-phase progression. They are characterized by the presence of two regions of homology in the C-terminal non-catalytic domain, termed polo-box 1 (PB1) and polo-box 2 (PB2). Here we demonstrate that both PB1 and PB2 are required for targeting the catalytic activity of Plk1 to centrosomes, midbody, and kinetochores. Expression of either kinase-inactive PLK1/K82M or the C-terminal plk1 Delta N induced a pre-anaphase arrest with elevated Cdc2 and Plk1 activity. Prophase-arrested cells exhibited randomly oriented spindle structures, whereas metaphase cells exhibited aberrant bipolar spindles with Mad2 localization at kinetochores of misaligned chromosomes. Microtubule nucleation activity of centrosomes was not compromised. In vivo time-lapse studies revealed that expression of plk1 Delta N resulted in repeated cycles of bipolar spindle formation and disruption, suggestive of a defect in spindle stability. A prolonged arrest frequently led to the generation of micronucleated cells in the absence of sisterchromatid separation and centrosome duplication, indicating that micronucleation is not a result of accumulated cytokinesis failures. Interestingly, bypass of the mitotic arrest by dominant-negative spindle checkpoint components led to a failure in completion of cytokinesis. We propose that, in mammalian cells, the polo-box-dependent Plk1 activity is required for proper metaphase/anaphase transition and for cytokinesis.  相似文献   
49.
Signal sequences are evolutionarily conserved and are often functionally interchangeable between prokaryotes and eukaryotes. However, we have found that the bacterial signal peptide, OmpA, functions incompletely in insect cells. Upon baculovirus-mediated expression of chloramphenicol acetyltransferase (CAT) in insect cells, OmpA signal peptide led to the cytosolic accumulation of the CAT molecules in an aglycosylated, signal-peptide cleaved form, in addition to the secretion of the glycosylated CAT. When green fluorescent protein (GFP) was used as another reporter, the GFP molecules expressed from the OmpA-GFP construct was distributed primarily in the cytosol as aggresome-like structures. These results together suggest that, subsequent to the cleavage of OmpA signal peptide in the ER, some of the processed proteins are returned to the cytoplasm. Since the prototypical insect signal peptide, melittin, did not result in this ER-to-cytosol dislocation of the reporter proteins, we proposed a model explaining the dislocation process in insect cells, apparently selective to the OmpA-directed secretory pathway bypassing the co-translational transport.  相似文献   
50.
Dendritic cells (DCs) promote immune responses to foreign Ags and immune tolerance to self-Ags. Deregulation of DCs is implicated in autoimmunity, but the molecules that regulate DCs to protect against autoimmunity have remained unknown. In this study, we show that mice lacking the protein tyrosine phosphatase Shp1 specifically in DCs develop splenomegaly associated with more CD11c(+) DCs. Splenic DCs from the mutant mice showed upregulation of CD86 and CCR7 expression and of LPS-induced production of proinflammatory cytokines. The mice manifested more splenic Th1 cells, consistent with the increased ability of their DCs to induce production of IFN-γ by Ag-specific T cells in vitro. The number of splenic CD5(+)CD19(+) B-1a cells and the serum concentrations of Igs M and G2a were also increased in the mutant mice. Moreover, aged mutant mice developed glomerulonephritis and interstitial pneumonitis together with increased serum concentrations of autoantibodies. Shp1 is thus a key regulator of DC functions that protects against autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号