首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1450篇
  免费   74篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   38篇
  2014年   41篇
  2013年   109篇
  2012年   89篇
  2011年   102篇
  2010年   65篇
  2009年   61篇
  2008年   112篇
  2007年   100篇
  2006年   90篇
  2005年   76篇
  2004年   109篇
  2003年   100篇
  2002年   92篇
  2001年   10篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   20篇
  1996年   20篇
  1995年   18篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   11篇
  1989年   3篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1980年   11篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   2篇
  1962年   1篇
排序方式: 共有1524条查询结果,搜索用时 15 毫秒
141.
A structure-activity relationship study of 4-anilinopyrimidines for dual EGFR/Her-2 inhibitor has resulted in the identification of 4-anilino-5-alkenyl or 5-alkynyl-6-methylpyrimidine derivatives that have exhibited effective inhibitory activity against both enzymes. The presence of 5-alkenyl or 5-alkynyl moiety bearing terminal hydrophilic group played important role for inhibition of these enzymes. Selected compounds in the series demonstrated some activity against Her-2 dependent cell line (BT474).  相似文献   
142.
During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration.  相似文献   
143.
144.
The root endodermis is the cylindrical boundary that separates the inner vascular tissue from the outer cortex and functions as an apoplasmic barrier for selective nutrient uptake. Recent developmental and cell biological studies have started to reveal the mechanisms by which this single cell layer serves as a key regulatory module of root growth, tissue patterning and nutrient flow, which in concert support the plant’s ability to survive in a terrestrial habitat. This review provides an overview of the key factors that contribute to the functioning of the root endodermis and discusses how this single cell layer dictates root growth and tissue patterning.  相似文献   
145.
Cell polarity is a fundamental property of eukaryotic cells that is dynamically regulated by both intrinsic and extrinsic factors during embryonic development 1, 2. One of the signaling pathways involved in this regulation is the Wnt pathway, which is used many times during embryogenesis and critical for human disease3, 4, 5. Multiple molecular components of this pathway coordinately regulate signaling in a spatially-restricted manner, but the underlying mechanisms are not fully understood. Xenopus embryonic epithelial cells is an excellent system to study subcellular localization of various signaling proteins. Fluorescent fusion proteins are expressed in Xenopus embryos by RNA microinjection, ectodermal explants are prepared and protein localization is evaluated by epifluorescence. In this experimental protocol we describe how subcellular localization of Diversin, a cytoplasmic protein that has been implicated in signaling and cell polarity determination6, 7 is visualized in Xenopus ectodermal cells to study Wnt signal transduction8. Coexpression of a Wnt ligand or a Frizzled receptor alters the distribution of Diversin fused with red fluorescent protein, RFP, and recruits it to the cell membrane in a polarized fashion 8, 9. This ex vivo protocol should be a useful addition to in vitro studies of cultured mammalian cells, in which spatial control of signaling differs from that of the intact tissue and is much more difficult to analyze.Download video file.(43M, mov)  相似文献   
146.
We describe a protocol for creating localized DNA double-strand breaks (DSBs) with minimal requirements that can be applied in cell biology and molecular biology. This protocol is based on the combination of 5-bromo-2'-deoxyuridine (BrdU) labeling and ultraviolet C (UVC) irradiation through porous membranes. Cells are labeled with 10 μM BrdU for 48-72 h, washed with Ca(2+)- and Mg(2+)-free PBS(-), covered by polycarbonate membranes with micropores and exposed to UVC light. With this protocol, localized DSBs are created within subnuclear areas, irrespective of the cell cycle phase. Recruitment of proteins involved in DNA repair, DNA damage response, chromatin remodeling and histone modifications can be visualized without any specialized equipment. The quality is the same as that obtained by laser microirradiation or by any other focal irradiation. DSBs become visible within 30 min of UVC irradiation.  相似文献   
147.
The present study compares the retention of four species that are often isolated in association with biomedical device-related infections - Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans - to three different surfaces. All four bacterial species were found to bind significantly less well to MPC-coated surfaces than to non-coated surfaces. We attribute this effect to the "superhydrophilicity" of MPC-coated surfaces, whereas hydrophobic surfaces are well known to reduce bacterial retention and thus to inhibit a crucial step in the formation of bacterial biofilms that lead to biomedical device-related infections and complications.  相似文献   
148.
The gustatory system is essential for almost all animals. However, the signal transduction mechanisms have not yet been fully elucidated. We isolated labellar chemosensilla from blowfly, Phormia regina, and purified calcium binding proteins from the water soluble fraction. The most abundant calcium-binding protein was calmodulin. To investigate the role of calmodulin in taste transduction, electrophysiological responses were recorded with the calmodulin inhibitor, W-7. When we stimulated the labellar chemosensillum with sucrose plus W-7, a dose-dependent decrease of impulse frequency was observed when the concentration was <50 microM. In addition, when W-7 at 50 microM or higher concentration was added, an initial short-term impulse generation from the sugar receptor cell was observed, but this was followed by a silent period. When the sensillum was stimulated with W-7 plus a membrane-permeable cGMP analog, dibtyryl-cGMP or 8-bromo-cGMP, impulses of the sugar receptor cell were induced but the frequency was decreased. By the sidewall-recording method, we observed that the receptor potential induced by sucrose stimulation was decreased by W-7 in the sugar receptor cell, and corresponded with a disappearance of impulses. These data strongly suggest that the cGMP-gated channel generating receptor potential in the sugar receptor cell requires calmodulin for its gating.  相似文献   
149.
The ultrasmall unicellular red alga Cyanidioschyzon merolae lives in the extreme environment of acidic hot springs and is thought to retain primitive features of cellular and genome organization. We determined the 16.5-Mb nuclear genome sequence of C. merolae 10D as the first complete algal genome. BLASTs and annotation results showed that C. merolae has a mixed gene repertoire of plants and animals, also implying a relationship with prokaryotes, although its photosynthetic components were comparable to other phototrophs. The unicellular green alga Chlamydomonas reinhardtii has been used as a model system for molecular biology research on, for example, photosynthesis, motility, and sexual reproduction. Though both algae are unicellular, the genome size, number of organelles, and surface structures are remarkably different. Here, we report the characteristics of double membrane- and single membrane-bound organelles and their related genes in C. merolae and conduct comparative analyses of predicted protein sequences encoded by the genomes of C. merolae and C. reinhardtii. We examine the predicted proteins of both algae by reciprocal BLASTP analysis, KOG assignment, and gene annotation. The results suggest that most core biological functions are carried out by orthologous proteins that occur in comparable numbers. Although the fundamental gene organizations resembled each other, the genes for organization of chromatin, cytoskeletal components, and flagellar movement remarkably increased in C. reinhardtii. Molecular phylogenetic analyses suggested that the tubulin is close to plant tubulin rather than that of animals and fungi. These results reflect the increase in genome size, the acquisition of complicated cellular structures, and kinematic devices in C. reinhardtii.  相似文献   
150.
Sugasawa K  Okuda Y  Saijo M  Nishi R  Matsuda N  Chu G  Mori T  Iwai S  Tanaka K  Tanaka K  Hanaoka F 《Cell》2005,121(3):387-400
The xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER). Ultraviolet light (UV)-damaged DNA binding protein (UV-DDB) is another complex that appears to be involved in the recognition of NER-inducing damage, although the precise role it plays and its relationship to XPC remain to be elucidated. Here we show that XPC undergoes reversible ubiquitylation upon UV irradiation of cells and that this depends on the presence of functional UV-DDB activity. XPC and UV-DDB were demonstrated to interact physically, and both are polyubiquitylated by the recombinant UV-DDB-ubiquitin ligase complex. The polyubiquitylation altered the DNA binding properties of XPC and UV-DDB and appeared to be required for cell-free NER of UV-induced (6-4) photoproducts specifically when UV-DDB was bound to the lesion. Our results strongly suggest that ubiquitylation plays a critical role in the transfer of the UV-induced lesion from UV-DDB to XPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号