首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   74篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   38篇
  2014年   41篇
  2013年   109篇
  2012年   89篇
  2011年   102篇
  2010年   65篇
  2009年   61篇
  2008年   112篇
  2007年   100篇
  2006年   90篇
  2005年   76篇
  2004年   109篇
  2003年   100篇
  2002年   92篇
  2001年   9篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   20篇
  1996年   20篇
  1995年   18篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   3篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1980年   11篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   2篇
  1962年   1篇
排序方式: 共有1522条查询结果,搜索用时 10 毫秒
891.
Type E botulinum toxin (BoNT/E)-producing Clostridium butyricum strains isolated from botulism cases or soil specimens in Italy and China were analyzed by using nucleotide sequencing of the bont/E gene, random amplified polymorphic DNA (RAPD) assay, pulsed-field gel electrophoresis (PFGE), and Southern blot hybridization for the bont/E gene. Nucleotide sequences of the bont/E genes of 11 Chinese isolates and of the Italian strain BL 6340 were determined. The nucleotide sequences of the bont/E genes of 11 C. butyricum isolates from China were identical. The deduced amino acid sequence of BoNT/E from the Chinese isolates showed 95.0 and 96.9% identity with those of BoNT/E from C. butyricum BL 6340 and Clostridium botulinum type E, respectively. The BoNT/E-producing C. butyricum strains were divided into the following three clusters based on the results of RAPD assay, PFGE profiles of genomic DNA digested with SmaI or XhoI, and Southern blot hybridization: strains associated with infant botulism in Italy, strains associated with food-borne botulism in China, and isolates from soil specimens of the Weishan lake area in China. A DNA probe for the bont/E gene hybridized with the nondigested chromosomal DNA of all toxigenic strains tested, indicating chromosomal localization of the bont/E gene in C. butyricum. The present results suggest that BoNT/E-producing C. butyricum is clonally distributed over a vast area.  相似文献   
892.
893.
894.
895.
The yeast Candida utilis does not possess an endogenous biochemical pathway for the synthesis of carotenoids. The central isoprenoid pathway concerned with the synthesis of prenyl lipids is present in C. utilis and active in the biosynthesis of ergosterol. In our previous study, we showed that the introduction of exogenous carotenoid genes, crtE, crtB, and crtI, responsible for the formation of lycopene from the precursor farnesyl pyrophosphate, results in the C. utilis strain that yields lycopene at 1.1 mg per g (dry weight) of cells (Y. Miura, K. Kondo, T. Saito, H. Shimada, P. D. Fraser, and N. Misawa, Appl. Environ. Microbiol. 64:1226–1229, 1998). Through metabolic engineering of the isoprenoid pathway, a sevenfold increase in the yield of lycopene has been achieved. The influential steps in the pathway that were manipulated were 3-hydroxy methylglutaryl coenzyme A (HMG-CoA) reductase, encoded by the HMG gene, and squalene synthase, encoded by the ERG9 gene. Strains overexpressing the C. utilis HMG-CoA reductase yielded lycopene at 2.1 mg/g (dry weight) of cells. Expression of the HMG-CoA catalytic domain alone gave 4.3 mg/g (dry weight) of cells; disruption of the ERG9 gene had no significant effect, but a combination of ERG9 gene disruption and the overexpression of the HMG catalytic domain yielded lycopene at 7.8 mg/g (dry weight) of cells. The findings of this study illustrate how modifications in related biochemical pathways can be utilized to enhance the production of commercially desirable compounds such as carotenoids.  相似文献   
896.
897.
Redox-reactions are playing a significant role in regulation of homeostasis of organism. Disorder of the redox-status is related with the onset and/or propagation of oxidative diseases such as lifestyle-related diseases, including cancers and cardiac diseases, etc. In vivo imaging of redox-status is thereby important in the analysis of mechanisms of oxidative diseases and developments of new medicines for the diseases. Aminoxyl radicals are redox-sensitive reporter molecules, which lose their paramagnetic moiety by reactions of free radicals or reducing compounds. Electron spin resonance (ESR) technique has been used to measure the molecules in vivo. In vivo spatial resolution in ESR imaging is in the range of a few millimeters and is not sufficient for the detailed diagnosis of disease models. Overhauser enhanced MRI (OMRI) is an emerging free radical imaging technique, which utilised electron-proton coupling to image the distribution of free radicals. In vivo imaging of redox-status is applicable with OMRI/aminoxyl radical technique. The detailed imaging analysis was demonstrated in oxidative diseases, such as tumour-bearing, neurodegeneration or gastric ulcer models. The OMRI/aminoxyl radical technique has a large potential as a diagnostic system for biomedical applications in the future.  相似文献   
898.
The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res. Commun. 319 (2004) 327-333] [21]. Based on this, it was hypothesized that the C16S toxin is internalized via clathrin-coated pits. To examine this possibility, the internalized toxin was observed with a fluorescent antibody using confocal laser-scanning microscopy. The confocal images clearly indicated that the C16S toxin was internalized mainly via clathrin-coated pits and localized in early endosomes. The toxin was colocalized with caveolin-1 which is one of the components of caveolae, however, implying the toxin was also internalized via caveolae. The confocal images also showed that the neurotoxin transported to the endosome was transferred to the Golgi apparatus. However, the non-toxic components were not merged with the Golgi marker protein, TGN38, implying the neurotoxin was dissociated from progenitor toxin in endosomes. These results suggested that the C16S toxin was separated to the neurotoxin and other proteins in endosome and the neurotoxin was further transferred to the Golgi apparatus which is the center for protein sorting.  相似文献   
899.
Apert syndrome is characterized by craniosynostosis and syndactyly, and is predominantly caused by mutation of either S252W or P253W in the fibroblast growth factor receptor (FGFR) 2 gene. In this study, we characterized the effects of one of the mutations (S252W) using primary calvarial osteoblasts derived from transgenic mice, Ap-Tg and sAp-Tg, that expressed an Apert-type mutant FGFR2 (FGFR2IIIc-S252W; FGFR2IIIc-Ap), and the soluble form (extracellular domain only) of the mutant FGFR2 (sFGFR2IIIc-Ap), respectively. Compared to WT-derived osteoblasts, osteoblasts from Ap-Tg mouse showed a higher proliferative activity and enhanced differentiation, while those from sAp-Tg mouse exhibited reduced potential for proliferation and osteogenic differentiation. When transplanted with β-tricalcium phosphate (β-TCP) granules into immunodeficient mice, Ap-Tg-derived osteoblasts showed a higher bone forming capacity, whereas sAp-Tg-derived osteoblasts were completely deficient for this phenotype. Phosphorylation of extracellular signal-regulated kinase (ERK), MEK, PLCγ, and p38 was increased in Ap-Tg-derived osteoblasts, whereas phosphorylation of these signaling molecules was reduced in sAp-Tg-derived osteoblasts. Interestingly, when these experiments were carried out using osteoblasts from the mice generated by crossing Ap-Tg and sAp-Tg (Ap/sAp-Tg), which co-expressed FGFR2IIIc-Ap and sFGFR2IIIc-Ap, the results were comparable to those obtained from WT-derived osteoblasts. Taken together, these results indicate that osteoblasts expressing FGFR2IIIc-Ap proliferate and differentiate via highly activated MEK, ERK, and p38 pathways, while these pathways are suppressed in osteoblasts expressing sFGFR2IIIc-Ap. Our findings also suggest that altered FGFR2IIIc signaling in osteoblasts is mostly responsible for the phenotypes seen in Apert syndrome, therefore these osteoblast cell lines are useful tools for investigating the pathogenesis of Apert syndrome.  相似文献   
900.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号