首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1451篇
  免费   75篇
  1526篇
  2023年   5篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   38篇
  2014年   41篇
  2013年   109篇
  2012年   89篇
  2011年   102篇
  2010年   65篇
  2009年   61篇
  2008年   112篇
  2007年   100篇
  2006年   90篇
  2005年   76篇
  2004年   109篇
  2003年   100篇
  2002年   92篇
  2001年   9篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   20篇
  1996年   20篇
  1995年   18篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   3篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1980年   11篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   2篇
排序方式: 共有1526条查询结果,搜索用时 12 毫秒
221.
Previously, we reported that chlorogenic acid (CGA) facilitated root hair formation at pH 4.0 in lettuce (Lactuca sativa L. cv. Grand Rapids). Light was essential for this process. In the present study, we determined relationships between CGA, light, and sugar during root hair formation in lettuce seedlings. The amount of CGA increased with white light in intact seedlings. Exogenously applied CGA restored root hair formation in dark-grown intact seedlings at pH 4.0. However, no root hair formation was induced in decapitated seedlings regardless of light exposure and CGA application. Application of sucrose or glucose induced both root hair formation and CGA synthesis in light-grown decapitated seedlings at pH 4.0. Blue light was the most effective for both root hair formation and CGA synthesis when supplied with sucrose to decapitated seedlings. Addition of sucrose and CGA together induced root hair formation at pH 4.0 in dark-grown decapitated seedlings. Results suggest that light induced CGA synthesis from sugar in the roots. Sugar was also required for root hair formation other than starting material of CGA synthesis. In addition, an unknown low pH-induced factor was essential for lettuce root hair formation.  相似文献   
222.
Peroxisomes are degraded by autophagic machinery termed "pexophagy" in yeast; however, whether this is essential for peroxisome degradation in mammals remains unknown. Here we have shown that Atg7, an essential gene for autophagy, plays a pivotal role in the degradation of excess peroxisomes in mammals. Following induction of peroxisomes by a 2-week treatment with phthalate esters in control and Atg7-deficient livers, peroxisomal degradation was monitored within 1 week after discontinuation of phthalate esters. Although most of the excess peroxisomes in the control liver were selectively degraded within 1 week, this rapid removal was exclusively impaired in the mutant liver. Furthermore, morphological analysis revealed that surplus peroxisomes, but not mutant hepatocytes, were surrounded by autophagosomes in the control. Our results indicated that the autophagic machinery is essential for the selective clearance of excess peroxisomes in mammals. This is the first direct evidence for the contribution of autophagic machinery in peroxisomal degradation in mammals.  相似文献   
223.
The Na+/H+ antiporter Nha1p of Saccharomyces cerevisiae plays an important role in maintaining intracellular pH and Na+ homeostasis. Nha1p has a two-domain structure composed of integral membrane and hydrophilic tail regions. Overexpression of a peptide of approximately 40 residues (C1+C2 domains) that is localized in the juxtamembrane area of its cytoplasmic tail caused cell growth retardation in highly saline conditions, possibly by decreasing Na+/H+ antiporter activity. A multicopy suppressor gene of this growth retardation was identified from a yeast genome library. The clone encodes a novel membrane protein denoted as COS3 in the genome data base. Overexpression or deletion of COS3 increases or decreases salinity-resistant cell growth, respectively. However, in nha1Delta cells, overexpression of COS3 alone did not suppress the growth retardation. Cos3p and a hydrophilic portion of Cos3p interact with the C1+C2 peptide in vitro, and Cos3p is co-precipitated with Nha1p from yeast cell extracts. Cos3p-GFP mainly resides at the vacuole, but overexpression of Nha1p caused a portion of the Cos3p-GFP proteins to shift to the cytoplasmic membrane. These observations suggest that Cos3p is a novel membrane protein that can enhance salinity-resistant cell growth by interacting with the C1+C2 domain of Nha1p and thereby possibly activating the antiporter activity of this protein.  相似文献   
224.
Medaka is an attractive model to study epimorphic regeneration. The fins have remarkable regenerative capacity and are replaced about 14 days after amputation. The formation of blastema, a mass of undifferentiated cells, is essential for regeneration; however, the molecular mechanisms are incompletely defined. To identify the genes required for fin regeneration, especially for blastema formation, we constructed cDNA libraries from fin regenerates at 3 days postamputation and 10 days postamputation. A total of 16,866 expression sequence tags (ESTs) were sequenced and subjected to BLASTX analysis. The result revealed that about 60% of them showed strong matches to previously identified proteins, and major signaling molecules related to development, including FGF, BMP, Wnt, Notch/Delta, and Ephrin/Eph signaling pathways were isolated. To identify novel genes that showed specific expression during fin regeneration, cDNA microarray was generated based on 2900 independent ESTs from each library which had no sequence similarity to known proteins. We obtained 6 candidate genes associated with blastema formation by gene expression pattern screening in competitive hybridization analyses and in situ hybridization. Olrfe16d23 and olrfe14k04 were expressed only in early regenerating stages when blastema formation was induced. The expression of olrf5n23, which encodes a novel signal peptide, was detected in wound epidermis throughout regeneration. Olrfe23l22, olrfe20n22, and olrfe24i02 were expressed notably in the blastema region. Our study has thus identified the gene expression profiles and some novel candidate genes to facilitate elucidation of the molecular mechanisms of fin regeneration.  相似文献   
225.
The I93M mutation in ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) was reported in one German family with autosomal dominant Parkinson's disease (PD). The causative role of the mutation has, however, been questioned. We generated transgenic (Tg) mice carrying human UCHL1 under control of the PDGF-B promoter; two independent lines were generated with the I93M mutation (a high- and low-expressing line) and one line with wild-type human UCH-L1. We found a significant reduction in the dopaminergic neurons in the substantia nigra and the dopamine content in the striatum in the high-expressing I93M Tg mice as compared with non-Tg mice at 20 weeks of age. Although these changes were absent in the low-expressing I93M Tg mice, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment profoundly reduced dopaminergic neurons in this line as compared with wild-type Tg or non-Tg mice. Abnormal neuropathologies were also observed, such as silver staining-positive argyrophilic grains in the perikarya of degenerating dopaminergic neurons, in I93M Tg mice. The midbrains of I93M Tg mice contained increased amounts of insoluble UCH-L1 as compared with those of non-Tg mice, perhaps resulting in a toxic gain of function. Collectively, our data represent in vivo evidence that expression of UCHL1(I93M) leads to the degeneration of dopaminergic neurons.  相似文献   
226.
227.
Calpain is secreted by intra-articular synovial cells and degrades the main components of cartilage matrix proteins, proteoglycan, and collagen, causing cartilage destruction. Matrix metalloproteinase-3 (MMP-3) has also been detected in synovial fluid and serum, and is involved in the development and progression of rheumatoid arthritis by degradation of the extracellular matrix and cartilage destruction. To investigate the relationship between calpain and MMP-3 in rheumatic inflammation, we utilized the rheumatic synovial cell line, MH7A. Tumor necrosis factor (TNF-alpha) stimulation-induced increased expression of mu-calpain, m-calpain, and MMP-3 in these cells, as well as the release of calpain and MMP-3 into the culture medium. The calpain inhibitors, ALLN (calpain inhibitor I) and calpeptin, did not affect the intracellular expression of MMP-3, but reduced the secretion of MMP-3 in a concentration-dependent manner. Down-regulation of mu- but not m-calpain by small interfering RNAs abolished TNF-alpha-induced MMP-3 release from the synovial cells. These findings suggest that calpain, particularly mu-calpain, regulates MMP-3 release by rheumatic synovial cells, in addition to exerting its own degradative action on cartilage.  相似文献   
228.
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.  相似文献   
229.
Organophosphorus compounds (OPs) such as pesticides, fungicides, and herbicides are highly toxic but are nevertheless extensively used worldwide. To detect OPs, we constructed a yeast strain that co-displays organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (EGFP) on the cell surface using a Flo1p anchor system. OP degradation releases protons and causes a change in pH. This pH change results in structural deformation of EGFP, which triggers quenching of its fluorescence, thereby making this cell useful for visual detection of OPs. Fluorescence microscopy confirmed the high-intensity fluorescence displayed by EGFP on the cell surface. The yeast strain possessed sufficient OPH hydrolytic activities for degrading OPs, as measured by incubation with 1 mM paraoxon for 24 h at 30°C. In addition, with 20 mM paraoxon at 30°C, fluorescence quenching of EGFP on the single yeast cell was observed within 40 s in a microchamber chip. These observations suggest that engineered yeast cells are suitable for simultaneous degradation and visual detection of OPs.  相似文献   
230.
In the fiddler crabs Uca saltitanta and Uca perplexa, males attract mates by waving their enlarged claws. We show that in both species waving is closely synchronised between neighbouring males in clusters, both in the presence of mate-searching females and in their absence. Wandering females visit those males in the cluster that produce more waves at faster wave rates. In U. perplexa, they also selectively visit those males that produce the greatest number of leading waves. Synchronous waving may be the result of a precedence effect causing male competition to produce leading signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号