首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1452篇
  免费   74篇
  1526篇
  2023年   5篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   38篇
  2014年   41篇
  2013年   109篇
  2012年   89篇
  2011年   102篇
  2010年   65篇
  2009年   61篇
  2008年   112篇
  2007年   100篇
  2006年   90篇
  2005年   76篇
  2004年   109篇
  2003年   100篇
  2002年   92篇
  2001年   9篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   20篇
  1996年   20篇
  1995年   18篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   3篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1980年   11篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   2篇
排序方式: 共有1526条查询结果,搜索用时 15 毫秒
941.
The plasma membrane Na+/H+ exchanger 1 is activated in response to various extrinsic factors, and this process is regulated by an intracellular pH-sensing mechanism. To identify the candidate residues responsible for intracellular pH regulation, we analyzed the functional properties of engineered Na+/H+ exchanger 1 mutants with charge-reversal mutations of charged residues located in the intracellular loops. Na+/H+ exchanger 1 mutants with mutations at 11 positions were well expressed in the plasma membrane, but that with E247R was not, suggesting that Glu247 is important for the functional expression of Na+/H+ exchanger 1. Charge-reversal mutations of Glu131 (E131R, E131K) and Arg327 (R327E) resulted in a shift in the intracellular pH dependence of the exchange activity measured by 22Na+ uptake to the acidic side, and it abolished the response to growth factors and a hyperosmotic medium; however, mutations of Asp448 (D448R) and Arg500 (R500E) slightly shifted it to the alkaline side. In E131R, in addition to the change in intracellular pH dependence, the affinities for extracellular Na+, Li+ and the inhibitor 5-(N-ethyl-N-isopropyl)amiloride significantly increased. Furthermore, charge-conserved mutation of E131 (E131D) was found to have no effect, whereas charge neutralization (E131Q) resulted in a slight acidic shift of exchange. These results support the view that the multiple charged residues identified in this study, along with several basic residues reported previously, participate in the regulation of the intracellular pH sensing of Na+/H+ exchanger 1. In addition, Glu131 may also be important for cation transport.  相似文献   
942.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   
943.
A cDNA encoding a putative extracellular α-L-arabinofuranosidase was cloned from the basidiomycete Coprinopsis cinerea (CcAbf62A). CcAbf62A belongs to glycoside hydrolase family 62 (GH62), but is phylogenetically distinct from previously characterized GH62 enzymes. The recombinant CcAbf62A, expressed in Pichia pastoris, released L-arabinose from both wheat arabinoxylan and oat-spelt xylan. The enzyme activity for wheat arabinoxylan was increased by the addition of CcEst1, a carbohydrate esterase from C. cinerea.  相似文献   
944.
Smc6, a member of the structural maintenance of chromosomes (SMC) family of proteins, forms a complex with related Smc5. Genetic analyses of yeast have demonstrated the involvement of Smc6 in DNA repair and checkpoint responses. In this study, we investigated the role of the Smc5/6 complex in higher eukaryotes by analyzing its behavior in Xenopus laevis egg extracts. Smc5/6 was loaded onto chromatin during DNA replication in a manner dependent on the initiation of DNA synthesis, and it dissociated from chromatin during mitosis. Moreover, the induction of DNA double-strand breaks following replication did not significantly affect the amount of chromatin-associated Smc6. These findings suggest that the Smc5/6 complex is regulated during the cell cycle, presumably in anticipation of DNA damage that may arise during replication.  相似文献   
945.
Acinetobacter sp. strain M-1 accumulated a large amount of wax esters from an n-alkane under nitrogen-limiting conditions. Under the optimized conditions with n-hexadecane as the substrate, the amount of hexadecyl hexadecanoate in the cells reached 0.17 g/g of cells (dry weight). Electron microscopic analysis revealed that multilayered disk-shaped intracellular inclusions were formed concomitant with wax ester formation. The contribution of acyl-CoA reductase to wax ester synthesis was evaluated by gene disruption analysis.  相似文献   
946.
 The effect of intrapleural instillation of recombinant human interferon γ (IFNγ) at increasing doses of (1–12) × 106 U was examined in six patients with cytologically positive pleural effusion due to lung cancer. Intrapleural instillation was repeated up to three times. Clinically, no reaccumulation of pleural effusion was observed in one patient and disappearance of lung cancer cells from the pleural effusion was seen in two other patients. No severe side-effects were observed. Considerable levels of IFNγ remained in the pleural effusion as well as in patients’ serum up to 7 days after instillation of 2 × 106 U and higher doses. The total cell number showed a transient decrease on day 1 of therapy. Levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin(IL)-1β and IL-6, in the pleural effusion remained almost stable after IFNγ instillation. On the other hand, intrapleural IL-1 receptor antagonist levels were remarkably elevated by the instillation of IFNγ. IL-2- and IL-12-inducible killer activity of pleural mononuclear cells tended to increase slightly. Despite the inability of IFNγ to control pleural effusion in this treatment schedule, IFNγ instilled by an intrapleural route had a potential local antitumor activity. Moreover, since IFNγ persists in pleural effusions for a long time after a single instillation, such a therapy in combination with other fibrogenic biological response modifiers can be promising. Received: 28 February 1997 / Accepted: 23 July 1997  相似文献   
947.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   
948.
We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3-10 microg.mL(-1). These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation.  相似文献   
949.
The 337-372 sequence of the factor VIIIa A1 subunit contains interactive sites for both zymogen factor X and the active enzyme, factor Xa. Solid phase binding studies indicated that factor Xa possessed a >20-fold higher affinity for the isolated A1 subunit of factor VIIIa compared with factor X. Heparin completely inhibited zero-length cross-linking of the 337-372 peptide to factor Xa but not to factor X. In the presence of calcium, factor Xa showed greater affinity for heparin than factor X. Studies using factor Xa mutants in which heparin-binding exosite residues were individually replaced by Ala showed that the R240A mutant was defective in recognition of the Lys36 cleavage site, generating the A137-372 intermediate with approximately 20% the catalytic efficiency of wild type. This defect likely resulted from an approximately 4-fold increase in Km for the A1 substrate because kcat values for the wild type and mutant were equivalent. Cleavage of the A1-A2 domain junction by factor Xa R240A was not blocked by the 337-372 peptide. Studies using mutant factor VIII where clustered acidic residues in the 337-372 segment were replaced by Ala showed that a factor VIIIa D361A/D362A/D363A mutant possessed a approximately 1.6-fold increase in Km for factor X compared with wild type. However, similar Km values were observed for recombinant factor X and R240A substrates. These results indicate that the binding regions of factor X and factor Xa for A1 domain overlap and that both utilize acidic residues 361-363. Furthermore, factor Xa but not factor X interacts with high affinity at this site via residues contained within the heparin-binding exosite of the proteinase.  相似文献   
950.
Transient receptor potential channels have recently been implicated in physiological functions in a urogenital system. In this study, we investigated the role of transient receptor potential vanilloid 4 (TRPV4) channels in a stretch sensing mechanism in mouse primary urothelial cell cultures. The selective TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD) evoked Ca2+ influx in wild-type (WT) urothelial cells, but not in TRPV4-deficient (TRPV4KO) cells. We established a cell-stretch system to investigate stretch-evoked changes in intracellular Ca2+ concentration and ATP release. Stretch stimulation evoked intracellular Ca2+ increases in a stretch speed- and distance-dependent manner in WT and TRPV4KO cells. In TRPV4KO urothelial cells, however, the intracellular Ca2+ increase in response to stretch stimulation was significantly attenuated compared with that in WT cells. Stretch-evoked Ca2+ increases in WT urothelium were partially reduced in the presence of ruthenium red, a broad TRP channel blocker, whereas that in TRPV4KO cells did not show such reduction. Potent ATP release occurred following stretch stimulation or 4α-PDD administration in WT urothelial cells, which was dramatically suppressed in TRPV4KO cells. Stretch-dependent ATP release was almost completely eliminated in the presence of ruthenium red or in the absence of extracellular Ca2+. These results suggest that TRPV4 senses distension of the bladder urothelium, which is converted to an ATP signal in the micturition reflex pathway during urine storage.Transient receptor potential vanilloid 4 (TRPV4),3 a member of the TRP superfamily of cation channels, is a Ca2+-permeable channel activated by a wide variety of physical and chemical stimuli (1, 2). TRPV4 was originally viewed as an osmo- or mechano-sensor, because the channel opens in response to hypotonicity-induced cell swelling (35) and shear stress (6). Alternatively, TRPV4 can be activated by diverse chemical stimuli such as synthetic phorbol ester 4α-phorbol 12,13-didecanoate (4α-PDD) (7), a botanical agent (bisandrographolide A), anandamide metabolites such as arachidonic acid and epoxyeicosatrienoic acids, as well as moderate warmth (>27 °C) (810). TRPV4 is widely expressed throughout the body, including renal epithelium, auditory hair cells, skin keratinocytes, hippocampus neurons, endothelial cells, and urinary bladder epithelium, thereby contributing to numerous physiological processes such as osmoregulation (11, 12), hearing (13), thermal and mechanical hyperalgesia (14, 15), neural activity in the brain (16), skin barrier recovery (17), and cell volume regulation (18). Therefore, the TRPV4 channel is now considered a multimodal transducer in various tissues and cells.Non-neuronal cells within the urinary bladder wall (notably the transitional epithelial cells (urothelial cells)) function as a barrier against ions, solutes, and infection and also participate in the detection of physical and chemical stimuli (1921). The urothelium expresses various sensory receptors and channels (bradykinin receptors, adrenergic/cholinergic receptors, nerve growth factor receptors, purinergic receptors, amiloride-sensitive Na+ channels, and TRP channels), all of which are substantially implicated in modulating bladder functions (22).Recently, the potential roles of TRP channels have been explored in the bladder. Thus far, expression of TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 has been reported in different regions of urogenital tracts (21). TRPV1 is reportedly expressed in the epithelial cells lining the urothelium, in interstitial cells, and in sensory nerve terminals. TRPV1-deficient mice displayed a higher frequency of low amplitude non-voiding bladder contractions in comparison with wild-type (WT) mice (22), suggesting that TRPV1 is required for detection of bladder stretch, which involves stretch-evoked release of ATP and nitric oxide. The release of both mediators was reduced in the bladders of TRPV1-deficient mice. In a clinical setting, capsaicin or resiniferatoxin reduces bladder overactivity through desensitization of bladder afferents by acting on TRPV1 (23). Expression of other TRP channels, e.g. TRPM8 and TRPA1, was found in sensory C fibers in the bladder (2427). The diagnostic ice water test is utilized to determine whether disturbance of bladder function involves neurogenic components, one of which could be related to TRPM8 function, in patients with spinal cord lesion (28). TRPA1 in sensory afferents is activated by several known ligands (allyl isothiocyanate and cinnamaldehyde), thereby inducing bladder overactivity (26). TRPV2 is expressed by several cell types in the rat bladder (29); however, its physiological function has not yet been investigated. TRPV4 is expressed in the urothelium and in smooth muscle cells of the urinary bladder (30, 31). Activation of the channel by specific ligands leads to augmentation of bladder contraction amplitude in cystometry and induction of bladder overactivity in vivo. In a separate cystometry analysis in conjunction with behavioral experiments, the intermicturitional interval was elongated and storage urine volume was increased in TRPV4-deficient mice compared with WT mice (32). Thus, TRPV4 may contribute to bladder function, especially to mediating bladder distention signals to primary afferent nerves during urine storage. However, whether urothelial TRPV4 is required for sensing mechanical stretch, or to what extent urothelial TRPV4 contributes to stretch-evoked ATP release, has not been precisely determined.In the present study, we examined the functional contribution of TRPV4 to stretch-dependent urothelial cell responses and stretch-evoked ATP release in vitro. We first established a primary cell culture for mouse urothelium and retention of TRPV4 expression was confirmed. Because urothelial cells are physically extended during urine storage in vivo, we reproduced this phenomenon in an in vitro experiment using the uni-axial cell stretch system. All the experiments were performed by comparing urothelial cells obtained from WT mice and TRPV4-deficient mice to evaluate the correlation between TRPV4 expression and stretch responses. We demonstrated that urothelial cells sense mechanical stretch stimuli via TRPV4 channels, which induces robust Ca2+ influx and contributes to ATP release upon extension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号