首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   25篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   19篇
  2015年   15篇
  2014年   11篇
  2013年   63篇
  2012年   24篇
  2011年   25篇
  2010年   17篇
  2009年   18篇
  2008年   19篇
  2007年   28篇
  2006年   25篇
  2005年   21篇
  2004年   17篇
  2003年   26篇
  2002年   21篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
101.
Exercise dramatically increases oxygen consumption and causes oxidative stress. Superoxide dismutase (SOD) is important in the first-line defence mechanisms against oxidative stress. To investigate the effect of acute exercise on the expression of SOD, we examined the expression of mRNA for three SOD isozymes, in mice run on a treadmill to exhaustion. Six hours after exercise, the expression of extracellular SOD (EC-SOD) mRNA increased significantly in skeletal muscle and persisted for 24 h, whereas no change was observed for cytoplasmic and mitochondrial SOD mRNA. Moreover, acute exercise also induced EC-SOD mRNA in the aorta. These results suggest that a single bout of exercise is enough to augment the expression EC-SOD mRNA in skeletal muscle and the aorta, and may partly explain the beneficial effect of exercise.  相似文献   
102.
103.
We attempted to delineate the events leading to hypomyelination in the brain of thelittle mouse, a promising murine model of isolated growth hormone deficiency. At 20 days of age, the mutant mouse brain weighed less than its normal counterpart, and this difference in brain weight persisted. Increase in CNPase activity was found to be suppressed in the cerebrum throughout the developmental stage, but not in the other parts of the brain. Differences in cerebral DNA content between thelittle and normal mice first became apparent on the 10th day of age. Thereafter, the rate of increase in thelittle brain consistently lagged behind the normal. [3H]Thymidine incorporation into the DNA fraction in vivo on the 7th day of age, when glial cell proliferation in the normal cerebrum is most active, was approximately half that of the controls in all parts of thelittle brain. These findings indicate that the hypomyelination of the mutant cerebrum might result from reduced oligodendroglial proliferation due to growth hormone deficiency.  相似文献   
104.
Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A‐I (apoA‐I) and phospholipids. Although peptide‐based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA‐I‐based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline‐punctuated bihelical amphipathic structure based on apoA‐I mimetic peptides. NSP formed α‐helical structure on 1‐palmitoyl‐2‐oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA‐I‐POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA‐I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
105.
Starch metabolism in Dunaliella parva Lerche is regulated by the osmolarity of the surrounding solute. Two isozymes showing amylolytic activity were obtained after purification by gel filtration chromatography. The isozymes show disproportionating activity (D‐enzyme) that is specific for malto‐oligosaccharides as substrate. Properties of the D‐enzyme in D. parva are similar to those in higher plants. The activity of the D‐enzyme is also found in various Dunaliella and Chlamydomonas, indicating that the D‐enzyme is also important in the starch metabolism in algae.  相似文献   
106.
107.
A soluble extract from human spermatozoa activates ascidian oocytes   总被引:1,自引:0,他引:1  
A soluble extract from human spermatozoa induced calcium oscillations and extrusion of the first polar body when injected into oocytes of the ascidian Ciona intestinalis . The properties of calcium oscillations and time of polar body extrusion precisely mimic oocyte activation induced by C. intestinalis sperm or sperm extracts. The data suggest that human sperm extracts can activate oocytes of different phyla by the same mechanism as homologous spermatozoa. Injection of inositol 1,4,5-trisphosphate (IP3) into C. intestinalis oocytes mimicked to some extent the initial stages of oocyte activation, but the results demonstrate that ascidian oocyte activation by human sperm extract cannot be explained solely in terms of IP3-induced calcium release. Injection of other calcium releasing second messengers, cyclic adenosine diphosphate ribose, or calcium ions, does not lead to oocyte activation or release intracellular calcium in ascidian oocytes. It was concluded that human spermatozoa contain one or more molecules that can trigger intracellular calcium release in oocytes from different phyla.  相似文献   
108.
Since the 1980s, the maize orange leafhopper, Cicadulina bipunctata, has been gradually expanding its range in east Asia associated with global warming. This leafhopper induces maize wallaby ear symptom (MWES) on young maize plants and has become a threat to forage maize production in southern parts of temperate Japan since around 2000. In this study, using predictions of future temperature and precipitation calculated from Atmosphere–Ocean Coupled General Circulation Models, the future risk of C. bipunctata expansion and MWES occurrence in Japan (spatial resolution: 1 km2) was predicted. A nominal logistic regression analysis showed a significant contribution of cumulative low temperature during winter to the current distribution of C. bipunctata. The range of C. bipunctata was predicted to expand northward, particularly in Kyushu, Shikoku and the southern part of Honshu after the 2060s. Predicted intensification of MWES would reduce the efficacy of maize cultivars that are currently tolerant to MWES, in southern Kyushu in the 2020s, and in most parts of Kyushu, Shikoku and southwestern Honshu in the 2060s. These results suggest the need for measures to counter further expansion of C. bipunctata and improvement of current tolerant maize cultivars.  相似文献   
109.
Crop leaves are subject to continually changing light levels in the field. Photosynthetic efficiency of a crop canopy and productivity will depend significantly on how quickly a leaf can acclimate to a change. One measure of speed of response is the rate of photosynthesis increase toward its steady state on transition from low to high light. This rate was measured for seven genotypes of soybean [Glycine max (L.) Merr.]. After 10 min of illumination, cultivar ‘UA4805’ (UA) had achieved a leaf photosynthetic rate (Pn) of 23.2 μmol · m?2 · s?1, close to its steady‐state rate, while the slowest cultivar ‘Tachinagaha’ (Tc) had only reached 13.0 μmol · m?2 · s?1 and was still many minutes from obtaining steady state. This difference was further investigated by examining induction at a range of carbon dioxide concentrations. Applying a biochemical model of limitations to photosynthesis to the responses of Pn to intercellular CO2 concentration (Ci), it was found that the speed of apparent in vivo activation of ribulose‐1:5‐bisphosphate carboxylase/oxygenase (Rubisco) was responsible for this difference. Sequence analysis of the Rubisco activase gene revealed single nucleotide polymorphisms that could relate to this difference. The results show a potential route for selection of cultivars with increased photosynthetic efficiency in fluctuating light.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号