首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848篇
  免费   34篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   20篇
  2015年   18篇
  2014年   21篇
  2013年   105篇
  2012年   37篇
  2011年   43篇
  2010年   30篇
  2009年   27篇
  2008年   45篇
  2007年   49篇
  2006年   61篇
  2005年   39篇
  2004年   50篇
  2003年   51篇
  2002年   42篇
  2001年   7篇
  2000年   7篇
  1999年   11篇
  1998年   17篇
  1997年   3篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   9篇
  1984年   9篇
  1983年   12篇
  1982年   14篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
  1970年   3篇
  1956年   2篇
排序方式: 共有882条查询结果,搜索用时 46 毫秒
101.

Background

Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion during the postnatal development of central nervous system (CNS). However, the source of the hypo-perfusion and its impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine the mean red blood cell (RBC) speed through single microvessels imaged with two-photon microscopy in the cerebral cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy).

Methodology/Principal Findings

We obtained a mean RBC speed (0.9±0.6 mm/sec) that ranged from 0.2 to 4.4 mm/sec from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed. These results were then compared with the conventional method for monitoring microvascular perfusion using the arteriovenous transit time (AVTT) determined by tracking fluorescent markers. A significant increase in the AVTT was observed in the exposed rats (1.9±0.6 sec) as compared to the age-matched non-exposed rats (1.2±0.3 sec). The results indicate that parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats.

Conclusions/Significance

The algorithm presented is simple and robust relative to monitoring individual RBC speeds, which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the conventional transit time method.  相似文献   
102.
Three phthalides, 3-butylidene-7-hydroxyphthalide, and cis and trans-6,7-dihydroxyligustilides, along with a dimeric phthalide wallichilide have been isolated from the hot water extract of the rhizome of Ligusticum wallichii. Their structures were established mainly on the basis of spectroscopic data. 3-Butyl-4,5-dihydro-3-hydroxy phthalide and adenosine were identified as active principles of the extract which are responsible for increase of coronary blood flow in the dog heart.  相似文献   
103.
Human immunodeficiency virus Nef is a myristoylated protein expressed early in infection by HIV. In addition to the well known down-regulation of the cell surface receptors CD4 and MHCI, Nef is able to alter T-cell signaling pathways. The ability to alter the cellular signaling pathways suggests that Nef can associate with signaling proteins. In the present report, we show that Nef can interact with calmodulin, the major intracellular receptor for calcium. Coimmunoprecipitation analyses with lysates from the NIH3T3 cell line constitutively expressing the native HIV-1 Nef protein revealed the presence of a stable Nef-calmodulin complex. When lysates from NIH3T3 cells were incubated with calmodulin-agarose beads in the presence of CaCl(2) or EGTA, calcium ion drastically enhanced the interaction between Nef and calmodulin, suggesting that the binding is under the influence of Ca(2+) signaling. Glutathione S-transferase-Nef fusion protein bound directly to calmodulin with high affinity. Using synthetic peptides based on the N-terminal sequence of Nef, we determined that within a 20-amino-acid N-terminal basic domain was sufficient for calmodulin binding. Furthermore, the myristoylated peptide bound to calmodulin with higher affinity than nonmyris-toylated form. Thus, the N-terminal myristoylation domain of Nef plays an important role in interacting with calmodulin. This domain is highly conserved in several HIV-1 Nef variants and resembles the N-terminal domain of NAP-22/CAP23, a myristoylated calmodulin-binder. These results for the interaction between HIV Nef and calmodulin in the cells suggested that the Nef might interfere with intracellular Ca(2+) signaling through calmodulin-mediated interactions in infected cells.  相似文献   
104.
Analysis of the conformational distribution of polypeptide segments in a conformational space is the first step for understanding a principle of structural diversity of proteins. Here, we present a statistical analysis of protein local structures based on interatomic C(alpha) distances. Using principal component analysis (PCA) on the intrasegment C(alpha)-C(alpha) atomic distances, the conformational space of protein segments, which we call the protein segment universe, has been visualized, and three essential coordinate axes, suitable for describing the universe, have been identified. Three essential axes specified radius of gyration, structural symmetry, and separation of hairpin structures from other structures. Among the segments of arbitrary length, 6-22 residues long, the conservation of those axes was uncovered. Further application of PCA to the two largest clusters in the universe revealed local structural motifs. Although some of motifs have already been reported, we identified a possibly novel strand motif. We also showed that a capping box, which is one of the helix capping motifs, was separated into independent subclusters based on the C(alpha) geometry. Implications of the strand motif, which may play a role for protein-protein interaction, are discussed. The currently proposed method is useful for not only mapping the immense universe of protein structures but also identification of structural motifs.  相似文献   
105.
Dioxins cause various adverse effects through transformation of aryl hydrocarbon receptor (AhR). In this study, we investigated whether black tea extract and its components, theaflavins, suppress AhR transformation in vitro. First, we confirmed that black tea extract strongly suppressed AhR transformation compared to green and oolong tea, although the catechin contents did not change significantly among the extracts. Then we isolated four theaflavins as active compounds from black tea leaves. They suppressed 1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AhR transformation in a dose-dependent manner. The IC(50) values of theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3,3'-digallate (Tfdg) were 4.5, 2.3, 2.2, and 0.7 muM, respectively. The suppressive effect of Tfdg was observed not only by pre-treatment but also by post-treatment. This suggests that theaflavins inhibit the binding of TCDD to the AhR and also the binding of the transformed AhR to the specific DNA-binding site as putative mechanisms.  相似文献   
106.
Glycosylation reactions of 5-thioglucopyranosyl trichloroacetimidates bearing ethereal protective groups at the 2-O-position 14-15, and 37 proceed smoothly to give alpha-glycosides stereoselectively by using a catalytic amount of silyl triflate. This methodology allowed us to achieve syntheses of sulfur-substituted isomaltotetraoside 2 and maltotetraoside 3. These studies also revealed that benzoyl-protected 5-thioglucopyranosyl trichloroacetimidate 12 underwent beta-selective glycosylation with C6-OH glucopyranosyl acceptors upon activation by BF3OEt2. This was applied for preparation of sulfur-substituted gentiobiosides 1 and 46.  相似文献   
107.
To understand the differences between the rat intestinal alkaline phosphatase isozymes rIAP-I and rIAP-II, we constructed structural models based on the previously determined crystal structure for human placental alkaline phosphatase (hPLAP). Our models of rIAP-I and rIAP-II displayed a typical alpha/beta topology, but the crown domain of rIAP-I contained an additional beta-sheet, while the embracing arm region of rIAP-II lacked the alpha-helix, when each model was compared to hPLAP. The representations of surface potential in the rIAPs were predominantly positive at the base of the active site. The coordinated metal at the active site was predicted to be a zinc triad in rIAP-I, whereas the typical combination of two zinc atoms and one magnesium atom was proposed for rIAP-II. Using metal-depleted extracts from rat duodenum or jejunum and hPLAP, we performed enzyme assays under restricted metal conditions. With the duodenal and jejunal extract, but not with hPLAP, enzyme activity was restored by the addition of zinc, whereas in nonchelated extracts, the addition of zinc inhibited duodenal IAP and hPLAP, but not jejunal IAP. Western blotting revealed that nearly all of the rIAP in the jejunum extracts was rIAP-I, whereas in duodenum the percentage of rIAP-I (55%) correlated with the degree of AP activation (60% relative to that seen with jejunal extracts). These data are consistent with the presence of a triad of zinc atoms at the active site of rIAP-I, but not rIAP-II or hPLAP. Although no differences in amino acid alignment in the vicinity of metal-binding site 3 were predicted between the rIAPs and hPLAP, the His153 residue of both rIAPs was closer to the metal position than that in hPLAP. Between the rIAPs, a difference was observed at amino acid position 317 that is indirectly related to the coordination of the metal at metal-binding site 3 and water molecules. These findings suggest that the side-chain position of His153, and the alignment of Q317, might be the major determinants for activation of the zinc triad in rIAP-I.  相似文献   
108.
Vertebrate troponin regulates muscle contraction through alternative binding of the C-terminal region of the inhibitory subunit, troponin-I (TnI), to actin or troponin-C (TnC) in a Ca(2+)-dependent manner. To elucidate the molecular mechanisms of this regulation by molluskan troponin, we compared the functional properties of the recombinant fragments of Akazara scallop TnI and rabbit fast skeletal TnI. The C-terminal fragment of Akazara scallop TnI (ATnI(232-292)), which contains the inhibitory region (residues 104-115 of rabbit TnI) and the regulatory TnC-binding site (residues 116-131), bound actin-tropomyosin and inhibited actomyosin-tropomyosin Mg-ATPase. However, it did not interact with TnC, even in the presence of Ca(2+). These results indicated that the mechanism involved in the alternative binding of this region was not observed in molluskan troponin. On the other hand, ATnI(130-252), which contains the structural TnC-binding site (residues 1-30 of rabbit TnI) and the inhibitory region, bound strongly to both actin and TnC. Moreover, the ternary complex consisting of this fragment, troponin-T, and TnC activated the ATPase in a Ca(2+)-dependent manner almost as effectively as intact Akazara scallop troponin. Therefore, Akazara scallop troponin regulates the contraction through the activating mechanisms that involve the region spanning from the structural TnC-binding site to the inhibitory region of TnI. Together with the observation that corresponding rabbit TnI-fragment (RTnI(1-116)) shows similar activating effects, these findings suggest the importance of the TnI N-terminal region not only for maintaining the structural integrity of troponin complex but also for Ca(2+)-dependent activation.  相似文献   
109.
Specific efflux transporters, such as P-glycoprotein, have been shown to confer drug resistance by decreasing the intracellular accumulation of anticancer drugs. Understanding influx transporters, as well as efflux transporters, is essential to overcome this resistance. We report the expression profile and pharmacological characterization of an organic cation transporter, SLC22A16. The results of our experiments indicate that SLC22A16 is a mediator of doxorubicin uptake in cancer cells. Quantitative real-time RT-PCR analyses show that SLC22A16 is expressed in primary samples taken from patients with acute leukemia. Xenopus oocytes injected with SLC22A16 cRNA import doxorubicin, a widely used anticancer drug for hematological malignancies, in a saturable and dose-dependent manner. The apparent Km value for doxorubicin import was 5.2+/-0.4 microM. In cytotoxic assays, stable transfectants of leukemic Jurkat cells overexpressing SLC22A16 cells became significantly more sensitive to doxorubicin (2 microM) treatment. Characterization of SLC22A16 will help in designing novel therapies targeting hematological malignancies.  相似文献   
110.
Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca2+-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca2+-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca2+ sensitivity of cardiac myofilament, but more severe change in Ca2+ sensitivity is associated with the clinical phenotype of RCM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号