首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1813篇
  免费   82篇
  国内免费   2篇
  1897篇
  2023年   4篇
  2022年   15篇
  2021年   16篇
  2020年   12篇
  2019年   20篇
  2018年   18篇
  2017年   34篇
  2016年   29篇
  2015年   59篇
  2014年   79篇
  2013年   124篇
  2012年   100篇
  2011年   103篇
  2010年   84篇
  2009年   94篇
  2008年   127篇
  2007年   107篇
  2006年   112篇
  2005年   106篇
  2004年   120篇
  2003年   110篇
  2002年   104篇
  2001年   16篇
  2000年   21篇
  1999年   23篇
  1998年   20篇
  1997年   18篇
  1996年   17篇
  1995年   8篇
  1994年   13篇
  1993年   27篇
  1992年   16篇
  1991年   12篇
  1990年   15篇
  1989年   18篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   8篇
  1983年   4篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1974年   2篇
  1971年   3篇
  1970年   3篇
  1965年   2篇
排序方式: 共有1897条查询结果,搜索用时 15 毫秒
11.
Physical exercise reportedly stimulates IL-1 production within working skeletal muscles, but its physiological significance remains unknown due to the existence of two distinct IL-1 isoforms, IL-1α and IL-1β. The regulatory complexities of these two isoforms, in terms of which cells in muscles produce them and their distinct/redundant biological actions, have yet to be elucidated. Taking advantage of our masticatory behavior (Restrained/Gnawing) model, we herein show that IL-1α/1β-double-knockout (IL-1-KO) mice exhibit compromised masseter muscle (MM) activity which is at least partially attributable to abnormalities of glucose handling (rapid glycogen depletion along with impaired glucose uptake) and dysfunction of IL-6 upregulation in working MMs. In wild-type mice, masticatory behavior clearly increased IL-1β mRNA expression but no incremental protein abundance was detectable in whole MM homogenates, whereas immunohistochemical staining analysis revealed that both IL-1α- and IL-1β-immunopositive cells were recruited around blood vessels in the perimysium of MMs after masticatory behavior. In addition to the aforementioned phenotype of IL-1-KO mice, we found the IL-6 mRNA and protein levels in MMs after masticatory behavior to be significantly lower in IL-1-KO than in WT. Thus, our findings confirm that the locally-increased IL-1 elicited by masticatory behavior, although present small in amounts, contributes to supporting MM activity by maintaining normal glucose homeostasis in these muscles. Our data also underscore the importance of IL-1-mediated local interplay between autocrine myokines including IL-6 and paracrine cytokines in active skeletal muscles. This interplay is directly involved in MM performance and fatigability, perhaps mediated through maintaining muscular glucose homeostasis.  相似文献   
12.
Two sharpnose pufferfishes, Canthigaster epila (Jenkins, 1903) and C. ocellicincta Allen et Randall, 1977, were collected from Okinawa-jima Island, Ryukyu Islands. One specimen each of these species was taken from relative ly deep waters: the specimen of C. epilampra caught at a depth of 60 m and that of C. ocellicincta at a depth of 40 m. These specimens represent the first records of the two species from Japan. No significant morphological differ ences were found between the present specimens and those reported from elsewhere.  相似文献   
13.
The ATPase 6 accessory protein 2 (ATP6AP2)/(pro)renin receptor (PRR) is essential for the biogenesis of active vacuolar H+-ATPase (V-ATPase). Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD) and transmembrane domain (TM) of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M) and causes X-linked mental retardation Hedera type (MRXSH) and X-linked parkinsonism with spasticity (XPDS) in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.  相似文献   
14.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   
15.
Liquid cultures were successfully generated from cotyledons of two Sonneratia species, S. alba and S. caseolaris in Murashige and Skoog (MS) medium containing 0.1 μmol L−1 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious roots differentiated from cotyledons of S. alba. Proliferated cells were subcultured and a large volume of suspension cells was subsequently established in 100-mL flasks. All the cytokinins tested inhibited cell proliferation. After three years of culture, the potential to differentiate was tested as indicated by greening of the cells. Greening occurred when suspension cells were transferred to solid MS medium with and without 0.1 μmol L−1 2,4-D. Greening was stimulated by low concentrations of the weak auxins indolebutyric acid (IBA) and naphthaleneacetic acid (NAA) while 2,4-D stimulated late-stage greening. Abscisic acid (ABA) inhibited greening. Gibberellic acid (GA3) at 1.0 μmol L−1 stimulated callus greening and was not inhibitory even when tested at high concentrations. Cytokinins were inhibitory in combination with 0.1 μmol L−1 of either IBA or NAA. The cause of different effects of plant hormones on growth and differentiation was discussed. Small-scale liquid media and 24-well culture plates of solid media methods developed in this paper are suitable for the optimization of hormonal conditions for cell proliferation and differentiation.  相似文献   
16.
17.
In this study, we have structurally characterized the amidase of a nitrile-degrading bacterium, Rhodococcus sp. N-771 (RhAmidase). RhAmidase belongs to amidase signature (AS) family, a group of amidase families, and is responsible for the degradation of amides produced from nitriles by nitrile hydratase. Recombinant RhAmidase exists as a dimer of about 107 kDa. RhAmidase can hydrolyze acetamide, propionamide, acrylamide and benzamide with kcat/Km values of 1.14 ± 0.23 mM− 1s− 1, 4.54 ± 0.09 mM− 1s− 1, 0.087 ± 0.02 mM− 1s− 1 and 153.5 ± 7.1 mM− 1s− 1, respectively. The crystal structures of RhAmidase and its inactive mutant complex with benzamide (S195A/benzamide) were determined at resolutions of 2.17 Å and 2.32 Å, respectively. RhAmidase has three domains: an N-terminal α-helical domain, a small domain and a large domain. The N-terminal α-helical domain is not found in other AS family enzymes. This domain is involved in the formation of the dimer structure and, together with the small domain, forms a narrow substrate-binding tunnel. The large domain showed high structural similarities to those of other AS family enzymes. The Ser-cis Ser-Lys catalytic triad is located in the large domain. But the substrate-binding pocket of RhAmidase is relatively narrow, due to the presence of the helix α13 in the small domain. The hydrophobic residues from the small domain are involved in recognizing the substrate. The small domain likely participates in substrate recognition and is related to the difference of substrate specificities among the AS family amidases.  相似文献   
18.
Some reports showed that serotonergic system might have existed and that 5-hydroxytryptamine (5-HT) was detected in the hamster heart. The source of 5-HT in the heart, however, remains to be fully elucidated. So the present study was designed to define serotonergic system and to clarify which cell could produce 5-HT in the heart. As a result, 5-HT was detected in homogenates of HL-1 cardiomyocytes by high performance liquid chromatography with fluorescence detection, but not in those of neonatal rat non-cardiomyocytes (NMCs). And TPH and AADC mRNAs were expressed in HL-1 cardiomyocytes and neonatal rat cardiomyocytes (MCs), not in NMCs. mRNAs of 5-HT(2A) receptor were detected in both MCs and NMCs, and those of 5-HT(2B) receptor in NMCs. These findings definitively demonstrate that 5-HT is secreted from the myocytes of the heart and strongly implied that 5-HT might play a certain role in cardiac physiology.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号