首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   73篇
  国内免费   2篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   10篇
  2019年   19篇
  2018年   16篇
  2017年   34篇
  2016年   27篇
  2015年   52篇
  2014年   68篇
  2013年   117篇
  2012年   90篇
  2011年   91篇
  2010年   72篇
  2009年   79篇
  2008年   116篇
  2007年   98篇
  2006年   104篇
  2005年   99篇
  2004年   111篇
  2003年   97篇
  2002年   95篇
  2001年   8篇
  2000年   9篇
  1999年   12篇
  1998年   19篇
  1997年   17篇
  1996年   15篇
  1995年   8篇
  1994年   13篇
  1993年   24篇
  1992年   12篇
  1991年   8篇
  1990年   11篇
  1989年   15篇
  1988年   4篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1978年   4篇
  1977年   2篇
  1974年   2篇
  1971年   3篇
  1970年   3篇
  1965年   2篇
排序方式: 共有1682条查询结果,搜索用时 31 毫秒
131.
Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21Cip1 and p27Kip1 but not p57Kip2 showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21Cip1 and p27Kip1 bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21Cip1 and p27Kip1 knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21Cip1 and p27Kip play important roles in the cell cycle exit of postnatal cardiomyocytes.  相似文献   
132.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   
133.
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer''s and Parkinson''s diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol‐7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α‐synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.  相似文献   
134.

Background

Ionotropic glutamate receptors (iGluRs) are responsible for extracellular signaling in the central nervous system. However, the relationship between the overall structure of the protein and its function has yet to be resolved. Atomic force microscopy (AFM) is an important technique that allows nano-scale imaging in liquid. In the present work we have succeeded in imaging by AFM of the external features of the most common iGluR, AMPA-R (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor), in a physiological environment.

Methods

Homomeric GluR3 receptors were over-expressed in insect cells, purified and reconstituted into lipid membranes. AFM images were obtained in a buffer from membranes immobilized on a mica substrate.

Results

Using Au nanoparticle-conjugated antibodies, we show that proteins reconstitute predominantly with the N-terminal domain uppermost on the membrane. A tetrameric receptor structure is clearly observed, but it displays considerable heterogeneity, and the dimensions differ considerably from cryo-electron microscopy measurements.

Conclusions

Our results indicate that the extracellular domains of AMPA-R are highly flexible in a physiological environment.

General significance

AFM allows us to observe the protein surface structure, suggesting the possibility of visualizing real time conformational changes of a functioning protein. This knowledge may be useful for neuroscience as well as in pharmaceutical applications.  相似文献   
135.
The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18 Å resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 × 110 Å in the membrane plane and a thickness of 70 Å across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.  相似文献   
136.
We previously reported that yamamarin, a pentapeptide with an amidated C‐terminus (DILRG‐NH2) isolated from larvae of the silkmoth, and its palmitoylated analog (C16‐DILRG‐NH2) suppressed proliferation of rat hepatoma (liver cancer) cells. In this study, we investigated the structure–activity relationship of yamamarin by in vitro assay and spectroscopic methods (CD and NMR) for various analogs. The in vitro assay results demonstrated that the chemical structure of the C‐terminal part (‐RG‐NH2) of yamamarin is essential for its activity. The CD and NMR results indicated that yamamarin and its analog adopt predominantly a random coil conformation. Moreover, a comparison of NMR spectra of DILRG‐NH2 and C16‐DILRG‐NH2 revealed that the N‐terminal palmitoyl group of C16‐DILRG‐NH2 did not affect the conformation of the C‐terminal part, which is essential for activity. Together, these results should assist in the design of more sophisticated anticancer drugs. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
137.
The aim of this study was to determine whether the bone-morphogenetic proreins-2 (BMP-2) or -7 (BMP-7) levels in follicular fluid (FF) are associated with success in oocyte fertilization during assisted reproductive technology (ART) treatment. Twenty-four cycles in 24 patients who underwent oocyte retrieval in Sugiyama clinic were included in this retrospective study. The patients were divided into two groups according to the success or failure of fertilization. FF samples were obtained from a single follicle in each patient, and the levels of BMP-2, BMP-7, Anti-Müllerian hormone (AMH), estradiol and progesterone from FF were measured, and evaluated in relation to the ART outcomes. The BMP-2 levels correlated positively with the AMH levels in FF (r(2) = 0.4928), but there was no statistically significant difference between BMP-7 and AMH levels. The BMP-2 and BMP-7 levels had no relation with either progesterone or estradiol levels, but BMP-2 levels in the fertilized group were significantly higher than those in the unfertilized group (P < 0.05). The BMP-2 levels in FF positively correlated with the AMH levels in FF, and those in the fertilized group were significantly higher than in the unfertilized group. Therefore, the BMP-2 levels in FF could be a predictive marker for fertilization.  相似文献   
138.
A series of cationic cyclic heptapeptides based on polymyxin B have been synthesized for use as permeabilizers of the outer membrane of Gram-negative bacteria. Only analogs with the Dab2-d-Phe3-Leu4-Xxx5 sequence (Xxx = Dab or Orn) showed a synergistic bactericidal effect when combined with conventional antibiotics, indicating that the Dab2 residue plays a critical role in permeation of the outer membrane of Gram-negative bacteria.  相似文献   
139.
In this study, we have structurally characterized the amidase of a nitrile-degrading bacterium, Rhodococcus sp. N-771 (RhAmidase). RhAmidase belongs to amidase signature (AS) family, a group of amidase families, and is responsible for the degradation of amides produced from nitriles by nitrile hydratase. Recombinant RhAmidase exists as a dimer of about 107 kDa. RhAmidase can hydrolyze acetamide, propionamide, acrylamide and benzamide with kcat/Km values of 1.14 ± 0.23 mM− 1s− 1, 4.54 ± 0.09 mM− 1s− 1, 0.087 ± 0.02 mM− 1s− 1 and 153.5 ± 7.1 mM− 1s− 1, respectively. The crystal structures of RhAmidase and its inactive mutant complex with benzamide (S195A/benzamide) were determined at resolutions of 2.17 Å and 2.32 Å, respectively. RhAmidase has three domains: an N-terminal α-helical domain, a small domain and a large domain. The N-terminal α-helical domain is not found in other AS family enzymes. This domain is involved in the formation of the dimer structure and, together with the small domain, forms a narrow substrate-binding tunnel. The large domain showed high structural similarities to those of other AS family enzymes. The Ser-cis Ser-Lys catalytic triad is located in the large domain. But the substrate-binding pocket of RhAmidase is relatively narrow, due to the presence of the helix α13 in the small domain. The hydrophobic residues from the small domain are involved in recognizing the substrate. The small domain likely participates in substrate recognition and is related to the difference of substrate specificities among the AS family amidases.  相似文献   
140.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the sequential reduction of the vinyl group of the D-ring and A-ring of biliverdin IXα (BV), using reducing equivalents provided by ferredoxin. This reaction produces phycocyanobilin, a pigment used for light-harvesting and light-sensing in red algae and cyanobacteria. The crystal structure of PcyA-BV reveals that BV is specifically bound in the PcyA active pocket through extensive hydrophobic and hydrophilic interactions. During the course of a mutational study of PcyA, we observed that mutation of the V225 position, apart from the processing sites, conferred an unusual property on PcyA; V225D mutant protein could bind BV and its analog BV13, but these complexes showed a distinct UV-vis absorption spectrum from that of the wild-type PcyA-BV complex. The crystal structures of BV- and BV13-bound forms of V225D protein revealed that gross structural changes occurred near the substrate-binding pocket, and that the BV/BV13 binding manner in the pocket was dramatically altered. Protein folding in V225D-BV/BV13 was more similar to that of substrate-free PcyA than that in PcyA-BV; the “induced-fit” did not occur when BV/BV13 was bound to the V225D protein. The unexpected structural change presented here provides a cautionary note about interpreting functional data derived from a mutated protein in the absence of its exact structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号