首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   13篇
  167篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   15篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   12篇
  2006年   17篇
  2005年   6篇
  2004年   8篇
  2003年   11篇
  2002年   12篇
  2001年   3篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1977年   2篇
  1968年   1篇
  1965年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
151.
152.
BACKGROUND: Ethylnitrosourea (ENU), a monofunctional alkylating agent, induces apoptosis and cell cycle arrest in neuroepithelial cells, neural stem cells in the fetal central nervous system (CNS). These effects occur immediately after the administration of ENU to pregnant animals resulting in fetal brain anomalies and long-term effects include brain tumors in the offspring. METHODS: Changes in gene expression were investigated in the fetal CNS after ENU administration to pregnant rats using microarray to identify the genes involved in the injury and recovery of the fetal CNS. RESULTS: The up-regulation of 21 genes in injury and 15 genes in recovery phases and down-regulation of 5 genes in injury and 3 genes in recovery phases were identified. The genes up-regulated in the injury phase contained p53-target genes that mediate apoptosis and cell cycle arrest, and those in the recovery phase contained cell proliferation-promoting genes. The genes down-regulated in the injury phase contained cholesterol biosynthesis-related genes. In addition, there were some genes that have not been identified to be involved in the CNS injury and recovery. CONCLUSIONS: The present study will provide a better understanding of the mechanisms of development, regeneration and carcinogenesis of the CNS as well as the mechanisms of ENU-induced fetal CNS injury and recovery.  相似文献   
153.
Protein N-glycosylation begins with the assembly of a lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. The first two steps of LLO biosynthesis are catalyzed by a functional multienzyme complex comprised of the Alg7 GlcNAc phosphotransferase and the heterodimeric Alg13/Alg14 UDP-GlcNAc transferase on the cytosolic face of the ER. In the Alg13/14 glycosyltransferase, Alg14 recruits cytosolic Alg13 to the ER membrane through interaction between their C-termini. Bioinformatic analysis revealed that eukaryotic Alg14 contains an evolved N-terminal region that is missing in bacterial orthologs. Here, we show that this N-terminal region of Saccharomyces cerevisiae Alg14 localize its green fluorescent protein fusion to the ER membrane. Deletion of this region causes defective growth at 38.5°C that can be partially complemented by overexpression of Alg7. Coimmunoprecipitation demonstrated that the N-terminal region of Alg14 is required for direct interaction with Alg7. Our data also show that Alg14 lacking the N-terminal region remains on the ER membrane through a nonperipheral association, suggesting the existence of another membrane-binding site. Mutational studies guided by the 3D structure of Alg14 identified a conserved α-helix involved in the second membrane association site that contributes to an integral interaction and protein stability. We propose a model in which the N- and C-termini of Alg14 coordinate recruitment of catalytic Alg7 and Alg13 to the ER membrane for initiating LLO biosynthesis.  相似文献   
154.
Tozaki T  Swinburne J  Hirota K  Hasegawa T  Ishida N  Tobe T 《Gene》2007,392(1-2):181-186
Genetic maps are extremely important tools for tracing the genes that govern economically significant traits, and microsatellites are a significant component of these. In this study, we isolated 2346 novel horse microsatellites as resources for the construction of high-density horse genetic maps. Of these 2346 markers, 339 (14.5%) horse sequences showed sequence homology to DNA sequences in the human genome, demonstrating that microsatellites as type II markers are valuable resources for developing linkage maps and that they have a potential equal to that of type I markers for developing comparative maps. Of the 339 markers, 206 (60.8%) were assigned to horse chromosomes using the Animal Health Trust (AHT) full-sib reference family, and 195 (94.6%) of these localized to the expected syntenic locations on the human genome. These results confirmed the high level of accuracy of in silico mapping. Thus, the 339 markers that exhibited homology to the human genome increased the density of markers on the horse-human comparative map. The resulting comparative map will facilitate the use of horse microsatellites as genetic markers for the identification of quantitative trait loci (QTL) that have been mapped on the human genome. In addition, although the in silico and linkage mapping data did not agree for the other 11 (5.4%) of the assigned 206 markers, these may represent new putative regions of horse-human synteny.  相似文献   
155.
Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3′ single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.  相似文献   
156.
Only limited studies are available on the molecular-level biosynthesis of cyclic lipopeptides (cyclic and hybrid molecules consisting of peptide and fatty acid moieties) in filamentous fungi. Here, we identified and characterized biosynthetic genes of the cyclic lipopeptides, known as verlamelins. Only four genes, coding for non-ribosomal peptide synthetase (NRPS), fatty acid hydroxylase, thioesterase, and AMP-dependent ligase, were found to be involved in verlamelin biosynthesis by the analysis of corresponding gene knockouts. Surprisingly, no gene(s) coding for fatty acid synthase or polyketide synthase was present in the cluster, while verlamelin A/B contained a 5-hydroxytetradecanoic acid moiety. Precursor feeding experiment indicated that both fatty acid hydroxylase and thioesterase are involved to supply 5-hydroxytetradecanoic acid. The results suggested that 5-hydroxytetradecanoic acid was supplied from primary metabolism via fatty acid hydroxylase and loaded onto NRPS. Elongation of the peptide and final cyclization were accomplished by NRPS. The knowledge obtained through this study should provide new insight into fungal lipopeptide biosynthesis.  相似文献   
157.
A common stress on plants is NaCl‐derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt‐alleviating mechanism through toxic ion dilution.  相似文献   
158.
Sialyltransferases biosynthesize sialyl-glycoconjugates involved in many biological and pathological processes. We investigated and characterized synthetic flavonoid derivatives as sialyltransferase inhibitors. We first examined 54 compounds by solid-phase enzyme assay using β-galactoside α2,6-sialyltransferase 1 (ST6Gal I) and β-galactoside α2,3-sialyltransferase. Several compounds inhibited sialyltransferase enzyme activity regardless of sialyl-linkage reactions. Among them, two compounds showed inhibitory activity against ST6Gal I with IC50 values less than 10 μM. Three characteristic features of flavonoids were determined by structure-inhibitory activity relationships. First, a double bond between C2-C3 linkages is required for the activity. Second, increasing hydrophilic properties on the B-ring markedly augmented the inhibitory effect. Third, a hydrophobic functional group introduced on the hydroxyl groups of the A-ring enhanced the inhibitory activity. Kinetic analysis using human ST6Gal I indicated a mixed inhibition mechanism of the compounds. In conclusion, the flavonoids identified could be applied for control of cellular expression of sialic acid.  相似文献   
159.
Chromatin assembly factor 1 (CAF-1) is involved in nucleo some assembly following DNA replication and nucleotide excision repair. In Arabidopsis thaliana, the three CAF-1 subunits are encoded by FAS1, FAS2 and, most likely, MSI1, respectively. In this study, we asked whether genomic stability is altered in fas1 and fas2 mutants that are lacking CAF-1 activity. Depletion of either subunit increased the frequency of somatic homologous recombination (HR) in planta approximately 40-fold. The frequency of transferred DNA (T-DNA) integration was also elevated. A delay in loading histones onto newly replicated or repaired DNA might make these DNA stretches more accessible, both to repair enzymes and to foreign DNA. Furthermore, fas mutants exhibited increased levels of DNA double-strand breaks, a G2-phase retardation that accelerates endoreduplication, and elevated levels of mRNAs coding for proteins involved in HR-all factors that could also contribute to upregulation of HR frequency in fas mutants.  相似文献   
160.
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号