首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   114篇
  2023年   3篇
  2022年   19篇
  2021年   32篇
  2020年   19篇
  2019年   19篇
  2018年   42篇
  2017年   44篇
  2016年   45篇
  2015年   63篇
  2014年   71篇
  2013年   211篇
  2012年   93篇
  2011年   106篇
  2010年   69篇
  2009年   50篇
  2008年   95篇
  2007年   95篇
  2006年   63篇
  2005年   63篇
  2004年   86篇
  2003年   66篇
  2002年   71篇
  2001年   18篇
  2000年   13篇
  1999年   17篇
  1998年   22篇
  1997年   7篇
  1996年   19篇
  1995年   17篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   7篇
  1982年   4篇
  1980年   7篇
  1978年   5篇
  1977年   4篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1969年   3篇
  1907年   2篇
  1906年   2篇
  1905年   2篇
  1904年   2篇
排序方式: 共有1650条查询结果,搜索用时 31 毫秒
131.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the sequential reduction of the vinyl group of the D-ring and A-ring of biliverdin IXα (BV), using reducing equivalents provided by ferredoxin. This reaction produces phycocyanobilin, a pigment used for light-harvesting and light-sensing in red algae and cyanobacteria. The crystal structure of PcyA-BV reveals that BV is specifically bound in the PcyA active pocket through extensive hydrophobic and hydrophilic interactions. During the course of a mutational study of PcyA, we observed that mutation of the V225 position, apart from the processing sites, conferred an unusual property on PcyA; V225D mutant protein could bind BV and its analog BV13, but these complexes showed a distinct UV-vis absorption spectrum from that of the wild-type PcyA-BV complex. The crystal structures of BV- and BV13-bound forms of V225D protein revealed that gross structural changes occurred near the substrate-binding pocket, and that the BV/BV13 binding manner in the pocket was dramatically altered. Protein folding in V225D-BV/BV13 was more similar to that of substrate-free PcyA than that in PcyA-BV; the “induced-fit” did not occur when BV/BV13 was bound to the V225D protein. The unexpected structural change presented here provides a cautionary note about interpreting functional data derived from a mutated protein in the absence of its exact structure.  相似文献   
132.
There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.  相似文献   
133.
Glycogen synthase (GS), a key enzyme in glycogen synthesis, is activated by the allosteric stimulator glucose-6-phosphate (G6P) and by dephosphorylation through inactivation of GS kinase-3 with insulin. The relative importance of these two regulatory mechanisms in controlling GS is not established, mainly due to the complex interplay between multiple phosphorylation sites and allosteric effectors. Here we identify a residue that plays an important role in the allosteric activation of GS by G6P. We generated knockin mice in which wild-type muscle GS was replaced by a mutant that could not be activated by G6P but could still be activated normally by dephosphorylation. We demonstrate that knockin mice expressing the G6P-insensitive mutant display an ~80% reduced muscle glycogen synthesis by insulin and markedly reduced glycogen levels. Our study provides genetic evidence that allosteric activation of GS is the primary mechanism by which insulin promotes muscle glycogen accumulation in?vivo.  相似文献   
134.
135.
The biotransformation of raspberry ketone and zingerone were individually investigated using cultured cells of Phytolacca americana. In addition to (2S)-4-(4-hydroxyphenyl)-2-butanol (2%), (2S)-4-(3,4-dihydroxyphenyl)-2-butanol (5%), 4-[4-(beta-d-glucopyranosyloxy)phenyl]-2-butanone (19%), 4-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (23%), and (2S)-4-(4-hydroxyphenyl)but-2-yl-beta-d-glucopyranoside (20%), two biotransformation products, i.e., 2-hydroxy-4-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (12%) and 2-hydroxy-5-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (11%), were isolated from suspension cells after incubation with raspberry ketone for three days. On the other hand, two compounds, i.e., (2S)-4-(4-hydroxy-3-methoxyphenyl)but-2-yl-beta-d-glucopyranoside (17%) and (2S)-2-(beta-d-glucopyranosyloxy)-4-[4-(beta-d-glucopyranosyloxy)-3-methoxyphenyl]butane (16%), together with (2S)-4-(4-hydroxy-3-methoxyphenyl)-2-butanol (15%), 4-[4-(beta-d-glucopyranosyloxy)-3-methoxyphenyl]-2-butanone (21%), and 4-[(3S)-3-hydroxybutyl]-2-methoxyphenyl-beta-d-glucopyranoside (24%) were obtained upon addition of zingerone. Cultured cells of P. americana can reduce, and regioselectively hydroxylate and glucosylate, these food ingredients to their beta-glycosides.  相似文献   
136.
We investigated the diversity and phylogeography of mitochondrial DNA (mtDNA) in Japanese macaques (Macaca fuscata), an endemic species in Japan that has the northernmost distribution of any non-human primate species. DNA samples from 135 localities representing the entire range of this species were compared. A total of 53 unique haplotypes were observed for the 412-bp partial mtDNA control region sequence, with length variation distinguishing the two subspecies. Clustering analyses suggested two putative major haplogroups, of which one was geographically distributed in eastern Japan and the other in western Japan. The populations in the east showed lower mtDNA diversity than those in the west. Phylogeographical relationships of haplotypes depicted with minimum spanning network suggested differences in population structure. Population expansion was significant for the eastern but not the western population, suggesting establishment of the ancestral population was relatively long ago in the west and recent in the east. Based on fossil evidence and past climate and vegetation changes, we inferred that the postulated population expansion may have taken place after the last glacial period (after 15,000 years ago). Mitochondrial DNA showed contrasting results in both variability and phylogenetic status of local populations to those of previous studies using protein variations, particularly for populations in the periphery of the range, with special inference on habitat change during the glacial period in response to cold adaptation. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
137.
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.  相似文献   
138.
Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was approximately 11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 x 10(-7) s(-1), about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision.  相似文献   
139.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   
140.
Although disialyl glycosphingolipids such as GD3 and GD2 have been considered to be associated with malignant tumours, whether branched-type disialyl glycosphingolipids show such an association is not well understood. We investigated the sialyltransferases responsible for the biosynthesis of DSGG (disialylgalactosylgloboside) from MSGG (monosialylgalactosylgloboside). Among six GalNAc:alpha2,6-sialyltransferases cloned to date, we focused on ST6GalNAc III, V and VI, which utilize sialylglycolipids as substrates. In vitro enzyme analyses revealed that ST6GalNAc III and VI generated DSGG from MSGG with V(max)/K(m) values of 1.91 and 4.16 respectively. Transfection of the cDNA expression vectors for these enzymes resulted in DSGG expression in a renal cancer cell line. Although both ST6GalNAc III and VI genes were expressed in normal kidney cells, the expression profiles of ST6GalNAc VI among 20 renal cancer cell lines correlated clearly with those of DSGG, suggesting that the sialyltransferase involved in the synthesis of DSGG in the kidney is ST6GalNAc-VI. ST6GalNAc-VI and DSGG were found in proximal tubule epithelial cells in normal kidney tissues, while they were downregulated in renal cancer cell lines and cancer tissues. All these findings indicated that DSGG was suppressed during the malignant transformation of the proximal tubules as a maturation arrest of glycosylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号