首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1390篇
  免费   100篇
  1490篇
  2023年   3篇
  2022年   18篇
  2021年   30篇
  2020年   19篇
  2019年   17篇
  2018年   40篇
  2017年   43篇
  2016年   43篇
  2015年   60篇
  2014年   68篇
  2013年   198篇
  2012年   90篇
  2011年   98篇
  2010年   65篇
  2009年   49篇
  2008年   95篇
  2007年   85篇
  2006年   63篇
  2005年   58篇
  2004年   79篇
  2003年   59篇
  2002年   64篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   16篇
  1997年   7篇
  1996年   18篇
  1995年   13篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1990年   2篇
  1985年   2篇
  1984年   5篇
  1982年   5篇
  1980年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1915年   1篇
  1909年   2篇
  1907年   2篇
  1906年   2篇
  1905年   2篇
  1904年   2篇
排序方式: 共有1490条查询结果,搜索用时 15 毫秒
81.
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is a monomeric enzyme that catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (AdoMet) to the phenolic oxygen of substituted catechols. Although the inhibitor recognition pattern and AdoMet site have already been studied crystallographically, structural information on the catalytic cycle of COMT has not yet been obtained. In this study, comparison of the co-factor and inhibitor-bound structures revealed that the Apo form of COMT shows a conformational change and there was no cleft corresponding to the AdoMet-binding site; the overall structure was partially open form and the substrate recognition site was not clearly defined. The Holo form of COMT was similar to the quaternary structure except for the β6–β7 and α2–α3 ligand recognition loops. These conformational changes provide a deeper insight into the structural events occurring in reactions catalyzed by AdoMet.  相似文献   
82.

Background  

CD26 is a type II, cell surface glycoprotein known as dipeptidyl peptidase (DPP) IV. Previous studies have revealed CD26 expression in T cell leukemia/lymphoma and malignant mesothelioma, and an inhibitory effect of anti-CD26 monoclonal antibody (mAb) against the growth of CD26+ cancer cells in vitro and in vivo. The function of CD26 in tumor development is unknown and the machinery with which the CD26 mAb induces its anti-tumor effect remains uncharacterized.  相似文献   
83.

Background

The causative pathogens of healthcare-associated pneumonia (HCAP) remain controversial, and the use of conventional cultivation of sputum samples is occasionally inappropriate due to the potential for oral bacterial contamination. It is also sometimes difficult to determine whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen of HCAP.

Methods

We evaluated the bacterial diversity in bronchoalveolar lavage fluid (BALF) using molecular and cultivation methods in 82 HCAP patients. BALF specimens were obtained from the lesions of pneumonia using bronchoscopy. The bacterial flora was analyzed according to the clone library method using amplified fragments of the 16S ribosomal RNA gene with universal primers. In addition, sputum cultures and the above specimens were assessed.

Results

Eighty (97.6%) of the 82 BALF samples obtained from the patients with HCAP showed positive polymerase chain reaction results. The predominant phylotypes detected in the BALF in this study included bacteria common in cases of community- and hospital-acquired pneumonia. In addition, the phylotypes of streptococci and anaerobes were detected in 19 (23.2%) and 8 (9.8%) cases, respectively. In particular, phylotypes of streptococci were highly detected among the patients 75 of age or older. Staphylococcus aureus was cultured in 23 (28.0%) cases using conventional cultivation methods and detected in only 6 (7.3%) cases as predominant phylotypes according to the clone library method.

Conclusions

The clone library analysis of BALF in the HCAP patients detected heterogeneous bacteria and a high incidence of streptococci compared with that observed using cultivation methods. In addition, the results of our study may indicate a lower incidence of MRSA than previously expected in HCAP patients.  相似文献   
84.
Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8). PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.  相似文献   
85.
This study examined whether the effects of FK506-binding protein dissociation from sarcoplasmic reticulum (SR) Ca(2+) release channels on excitation-contraction (EC) coupling changed when SR Ca(2+) reuptake and (or) the trans-sarcolemmal Ca(2+) extrusion were altered. The steady-state twitch Ca(2+) transient (CaT), cell shortening, post-rest caffeine-induced CaT, and Ca(2+) sparks were measured in rat ventricular myocytes using laser-scanning confocal microscopy. In the normal condition, 50 micromol FK506/L significantly increased steady-state CaT, cell shortening, and post-rest caffeine-induced CaT. When the cells were solely perfused with thapsigargin, FK506 did not reduce any of the states, but when low [Ca(2+)](0) (0.1 mmol/L) was perfused additionally, FK506 reduced CaT and cell shortening, and accelerated the reduction of post-rest caffeine-induced CaT. FK506 significantly increased Ca(2+) spark frequency in the normal condition, whereas it mainly prolonged duration of individual Ca(2+) sparks under the combination of thapsigargin and low [Ca(2+)](0) perfusion. Modification of SR Ca(2+) release by FK506 impaired EC coupling only when released Ca(2+) could not be taken back into the SR and was readily extruded to the extracellular space. Our findings could partly explain the controversy regarding the contribution of FK506-binding protein dissociation to defective EC coupling.  相似文献   
86.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   
87.
The milk-clotting activity of Mucor-rennin obtained from Mucor pusillus Lindt, was not changed by the addition of DFP in the reaction mixture. This finding suggested the probable absence of a serine residue at the active center of the enzyme. Sulfhydryl reagents such as Nekelgon, N-ethyl maleimide, PCMB failed to influence the milk-clotting reaction, indicating that a. reactive sulfhydryl group is not required for the enzymatic activity. The activity was inhibited when Mucor-rennin was treated with iodine at pH higher than 5.0. It was shown that 131I2 was incorporated into the enzyme. When Mucor-rennin was photooxidized in the presence of methylene blue, the milk-clotting activity was inactivated. In this case, tyrosine, tryptophan, and histidine residues in the enzyme were oxidized. Among these amino acids, the histidine residue was more rapidly oxidized than other amino acids. A parallel relation was observed between the decrease of the amount of histidine residue and the inactivation of the enzyme. From these results, it is concluded that the histidine residue present in Mucor-rennin has a relation to the active center of this enzyme.  相似文献   
88.
N-myristoylation of eukaryotic cellular proteins has been recognized as a modification that occurs mainly on cytoplasmic proteins. In this study, we examined the membrane localization, membrane integration, and intracellular localization of four recently identified human N-myristoylated proteins with predicted transmembrane domains. As a result, it was found that protein Lunapark, the human ortholog of yeast protein Lnp1p that has recently been found to be involved in network formation of the endoplasmic reticulum (ER), is an N-myristoylated polytopic integral membrane protein. Analysis of tumor necrosis factor-fusion proteins with each of the two putative transmembrane domains and their flanking regions of protein Lunapark revealed that transmembrane domain 1 and 2 functioned as type II signal anchor sequence and stop transfer sequence, respectively, and together generated a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. Immunofluorescence staining of HEK293T cells transfected with a cDNA encoding protein Lunapark tagged with FLAG-tag at its C-terminus revealed that overexpressed protein Lunapark localized mainly to the peripheral ER and induced the formation of large polygonal tubular structures. Morphological changes in the ER induced by overexpressed protein Lunapark were significantly inhibited by the inhibition of protein N-myristoylation by means of replacing Gly2 with Ala. These results indicated that protein N-myristoylation plays a critical role in the ER morphological change induced by overexpression of protein Lunapark.  相似文献   
89.
The biosynthesis of iron–sulfur (Fe–S) clusters in Bacillus subtilis is mediated by the SUF‐like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe–S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe–S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe–S cluster assembly.  相似文献   
90.
The PI3K (phosphatidylinositol-3-kinase)/mTOR (mammalian target of rapamycin) pathway is frequently activated in endometrial cancer through various PI3K/AKT-activating genetic alterations. We examined the antitumor effect of NVP-BEZ235--a dual PI3K/mTOR inhibitor--and RAD001--an mTOR inhibitor--in 13 endometrial cancer cell lines, all of which possess one or more alterations in PTEN, PIK3CA, and K-Ras. We also combined these compounds with a MAPK pathway inhibitor (PD98059 or UO126) in cell lines with K-Ras alterations (mutations or amplification). PTEN mutant cell lines without K-Ras alterations (n?=?9) were more sensitive to both RAD001 and NVP-BEZ235 than were cell lines with K-Ras alterations (n?=?4). Dose-dependent growth suppression was more drastically induced by NVP-BEZ235 than by RAD001 in the sensitive cell lines. G1 arrest was induced by NVP-BEZ235 in a dose-dependent manner. We observed in vivo antitumor activity of both RAD001 and NVP-BEZ235 in nude mice. The presence of a MEK inhibitor, PD98059 or UO126, sensitized the K-Ras mutant cells to NVP-BEZ235. Robust growth suppression by NVP-BEZ235 suggests that a dual PI3K/mTOR inhibitor is a promising therapeutic for endometrial carcinomas. Our data suggest that mutational statuses of PTEN and K-Ras might be useful predictors of sensitivity to NVP-BEZ235 in certain endometrial carcinomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号