首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   12篇
  国内免费   1篇
  315篇
  2024年   1篇
  2022年   11篇
  2021年   22篇
  2020年   10篇
  2019年   7篇
  2018年   15篇
  2017年   8篇
  2016年   6篇
  2015年   20篇
  2014年   17篇
  2013年   23篇
  2012年   22篇
  2011年   21篇
  2010年   10篇
  2009年   7篇
  2008年   13篇
  2007年   13篇
  2006年   8篇
  2005年   13篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1969年   4篇
  1968年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
51.
The ryanodine receptor type 1 (RyR1) is a homotetrameric Ca(2+) release channel located in the sarcoplasmic reticulum of skeletal muscle where it plays a role in the initiation of skeletal muscle contraction. A soluble, 6×-histidine affinity-tagged cytosolic fragment of RyR1 (amino acids 1-4243) was expressed in HEK-293 cells, and metal affinity chromatography under native conditions was used to purify the peptide together with interacting proteins. When analyzed by gel-free liquid chromatography mass spectrometry (LC-MS), 703 proteins were identified under all conditions. This group of proteins was filtered to identify putative RyR interacting proteins by removing those proteins found in only 1 RyR purification and proteins for which average spectral counts were enriched by less than 4-fold over control values. This resulted in 49 potential RyR1 interacting proteins, and 4 were selected for additional interaction studies: calcium homeostasis endoplasmic reticulum protein (CHERP), endoplasmic reticulum-Golgi intermediate compartment 53-kDa protein (LMAN1), T-complex protein, and phosphorylase kinase. Western blotting showed that only CHERP co-purified with affinity-tagged RyR1 and was eluted with imidazole. Immunofluorescence showed that endogenous CHERP co-localizes with endogenous RyR1 in the sarcoplasmic reticulum of rat soleus muscle. A combination of overexpression of RyR1 in HEK-293 cells with siRNA-mediated suppression of CHERP showed that CHERP affects Ca(2+) release from the ER via RyR1. Thus, we propose that CHERP is an RyR1 interacting protein that may be involved in the regulation of excitation-contraction coupling.  相似文献   
52.
The present research was conducted in district Jhang, Pakistan, to evaluate the concentration of metals/metalloids in soil and pumpkin (Cucurbita maxima) irrigated with domestic wastewater. Data revealed that the levels of metals and metalloids in soil samples from two different sites were below the safe limits except Cd, whereas, in the vegetable, the concentrations of As, Se, Ni, Mo, Pb, Mn, and Cu were above the safe limits. The levels of 12 metals and metalloids in the soil were ranged between 0.14 to 22.76 mg/kg at site-I and 0.16 to 22.13 mg/kg at site-II. The levels of these metals in the vegetable were found 0.35 to 61.13 mg/kg at site-I and 0.31 to 53.63 mg/kg at site-II. The transfer factor at both sites was highest for As and Co. The pollution load index recorded for Se, Cu, Cd, Mo, Pb, and Co was greater than 1. The daily intake of As, Mn, and Mo was above the oral reference dose, which reflects that the intake of pumpkin is not safe for the inhabitants of the selected sites. The control measures should be taken to phytoextract heavy metals and metalloids from polluted sites so as to reduce the health risks.  相似文献   
53.
54.
Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe−/− mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe−/− mice.  相似文献   
55.
56.
Polyphenol oxidase (PPO) activity has been reported in orchard grass (Dactylis glomerata); however, to date, no endogenous substrates have been identified. In the present study, we report the isolation and structural elucidation of PPO substrates in this species. The free phenol fraction was extracted, separated by reverse-phase chromatography and six potential substrates, including two hydroxycinnamate esters, were identified by UV spectrometry, electrospray ionisation-tandem mass spectrometry (LC-ESI-MSn) and 1D and 2D NMR analyses (1H NMR, 13C NMR, DEPT, COSY, HMQC and HMBC). Furthermore, three caffeoylquinic acids (3-CQA, 4-CQA and 5-CQA) were identified by comparison of their spectral data (ESI-MS) with those of known compounds and literature data. Five of these compounds were demonstrated to be substrates for orchard grass PPO.  相似文献   
57.
Environmental and occupational exposure to chromium compounds, especially hexavalent chromium [Cr(VI)], is widely recognized as a potential nephrotoxic in humans and animals. Its toxicity is associated with overproduction of free radicals, which induces oxidative damage. Recent evidence indicates that Pycnogenol® (PYC), French maritime pine bark extract, exhibits antioxidant potential and protects against various oxidative stressors. The aim of the present study was to examine the modulating impacts of PYC on potassium dichromate (K2Cr2O7)-induced oxidative damage and nephrotoxicity in rats. Male Wistar rats were divided into four groups. The first group was control, the second group was control plus pre-treated with PYC (10 mg/kg, body weight; in saline; intraperitoneally; once daily for 3 weeks) as drug control and the third group was saline pre-treated plus treated with a single injection of K2Cr2O7 (15 mg/kg, body weight; in saline; intraperitoneally) as toxicant group. The fourth group was PYC pre-treated plus K2Cr2O7 injected. Forty-eight hours after K2Cr2O7-treatment, blood was drawn for estimation of renal injury markers in serum. Rats were then sacrificed, and their kidneys were dissected for biochemical and histopathological assays. K2Cr2O7-treated rats showed significant increases in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine (Scr), and alkaline phosphatase (ALP), which were significantly (P < 0.05) decreased by PYC pre-treatment. Moreover, prophylactic pre-treatment of rats with PYC significantly (P < 0.05) ameliorated increased thiobarbituric reactive substances (TBARS), malonaldehyde (MDA) and protein carbonyl (PC), and decreased levels of glutathione (GSH) and catalase activity in the kidney homogenate of K2Cr2O7-treated rats. These results were also supported and confirmed with histopathological findings. The study suggests that PYC is effective in preventing K2Cr2O7-induced oxidative mediated nephrotoxicity, but more studies are needed to confirm the effects of PYC as a nephroprotective agent.  相似文献   
58.
59.

Background  

The phylum Verrucomicrobia is a divergent phylum within domain Bacteria including members of the microbial communities of soil and fresh and marine waters; recently extremely acidophilic members from hot springs have been found to oxidize methane. At least one genus, Prosthecobacter, includes species with genes homologous to those encoding eukaryotic tubulins. A significant superphylum relationship of Verrucomicrobia with members of phylum Planctomycetes possessing a unique compartmentalized cell plan, and members of the phylum Chlamydiae including human pathogens with a complex intracellular life cycle, has been proposed. Based on the postulated superphylum relationship, we hypothesized that members of the two separate phyla Planctomycetes and Verrucomicrobia might share a similar ultrastructure plan differing from classical prokaryote organization.  相似文献   
60.
Miscanthus × giganteus is a source of platform chemicals and bioethanol through fermentation. Cinnamates in leaves and stems were analysed by LC–ESI-MSn. Free phenols were extracted and separated chromatographically. More than 20 hydroxycinnamates were identified by UV and LC–ESI-MSn. Comparative LC–MS studies on the leaf extract showed isomers of O-caffeoylquinic acid (3-CQA, 4-CQA and 5-CQA), O-feruloylquinic acid (3-FQA, 4-FQA and 5-FQA) and para-coumaroylquinic acid (3-pCoQA and 5-pCoQA). Excepting 3-pCoQA, all were also detected in stem. 5-CQA dominated in leaf; a mandelonitrile–caffeoylquinic acid dominated in stem. Three minor leaf components were distinguished by fragmentation patterns in a targetted MS2 experiment as dicaffeoylquinic acid isomers. Others (Mr 516) were tentatively identified as hexosylcaffeoyl-quinates. Three positional isomers of O-caffeoylshikimic acid were minor components. p-Hydroxybenzaldehyde was also a major component in stem. This is the first report of the hydroxycinnamic acid profile of leaves and stems of M. × giganteus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号