首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1658篇
  免费   159篇
  2023年   11篇
  2022年   12篇
  2021年   22篇
  2020年   17篇
  2019年   19篇
  2018年   28篇
  2017年   30篇
  2016年   45篇
  2015年   89篇
  2014年   87篇
  2013年   96篇
  2012年   134篇
  2011年   133篇
  2010年   89篇
  2009年   75篇
  2008年   107篇
  2007年   90篇
  2006年   84篇
  2005年   86篇
  2004年   94篇
  2003年   75篇
  2002年   94篇
  2001年   18篇
  2000年   13篇
  1999年   18篇
  1998年   14篇
  1997年   8篇
  1996年   11篇
  1995年   13篇
  1994年   11篇
  1993年   10篇
  1992年   12篇
  1991年   14篇
  1990年   9篇
  1989年   21篇
  1988年   11篇
  1987年   14篇
  1986年   10篇
  1985年   21篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1972年   3篇
排序方式: 共有1817条查询结果,搜索用时 854 毫秒
51.
52.

Background

Electroencephalogram (EEG) acquisition is routinely performed to support an epileptic origin of paroxysmal events in patients referred with a possible diagnosis of epilepsy. However, in children with partial epilepsies the interictal EEGs are often normal. We aimed to develop a multivariable diagnostic prediction model based on electroencephalogram functional network characteristics.

Methodology/Principal Findings

Routinely performed interictal EEG recordings at first presentation of 35 children diagnosed with partial epilepsies, and of 35 children in whom the diagnosis epilepsy was excluded (control group), were used to develop the prediction model. Children with partial epilepsy were individually matched on age and gender with children from the control group. Periods of resting-state EEG, free of abnormal slowing or epileptiform activity, were selected to construct functional networks of correlated activity. We calculated multiple network characteristics previously used in functional network epilepsy studies and used these measures to build a robust, decision tree based, prediction model. Based on epileptiform EEG activity only, EEG results supported the diagnosis of with a sensitivity and specificity of 0.77 and 0.91 respectively. In contrast, the prediction model had a sensitivity of 0.96 [95% confidence interval: 0.78–1.00] and specificity of 0.95 [95% confidence interval: 0.76–1.00] in correctly differentiating patients from controls. The overall discriminative power, quantified as the area under the receiver operating characteristic curve, was 0.89, defined as an excellent model performance. The need of a multivariable network analysis to improve diagnostic accuracy was emphasized by the lack of discriminatory power using single network characteristics or EEG''s power spectral density.

Conclusions/Significance

Diagnostic accuracy in children with partial epilepsy is substantially improved with a model combining functional network characteristics derived from multi-channel electroencephalogram recordings. Early and accurate diagnosis is important to start necessary treatment as soon as possible and inform patients and parents on possible risks and psychosocial aspects in relation to the diagnosis.  相似文献   
53.
Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.  相似文献   
54.
Cytomegalovirus (CMV) is the most common cause of congenital infection, and is a major cause of sensorineural hearing loss and neurological disabilities. Evaluating the risk for a CMV infected fetus to develop severe clinical symptoms after birth is crucial to provide appropriate guidance to pregnant women who might have to consider termination of pregnancy or experimental prenatal medical therapies. However, establishing the prognosis before birth remains a challenge. This evaluation is currently based upon fetal imaging and fetal biological parameters, but the positive and negative predictive values of these parameters are not optimal, leaving room for the development of new prognostic factors. Here, we compared the amniotic fluid peptidome between asymptomatic fetuses who were born as asymptomatic neonates and symptomatic fetuses who were either terminated in view of severe cerebral lesions or born as severely symptomatic neonates. This comparison allowed us to identify a 34-peptide classifier in a discovery cohort of 13 symptomatic and 13 asymptomatic neonates. This classifier further yielded 89% sensitivity, 75% specificity and an area under the curve of 0.90 to segregate 9 severely symptomatic from 12 asymptomatic neonates in a validation cohort, showing an overall better performance than that of classical fetal laboratory parameters. Pathway analysis of the 34 peptides underlined the role of viral entry in fetuses with severe brain disease as well as the potential importance of both beta-2-microglobulin and adiponectin to protect the injured fetal brain infected with CMV. The results also suggested the mechanistic implication of the T calcium channel alpha-1G (CACNA1G) protein in the development of seizures in severely CMV infected children. These results open a new field for potential therapeutic options. In conclusion, this study demonstrates that amniotic fluid peptidome analysis can effectively predict the severity of congenital CMV infection. This peptidomic classifier may therefore be used in clinical settings during pregnancy to improve prenatal counseling.  相似文献   
55.
The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries.  相似文献   
56.
Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required.  相似文献   
57.
A central goal for most biopharmaceutical companies is to reduce the development timeline to reach clinical proof of concept. This objective requires the development of tools that ensure the quality of biotherapeutic material destined for the clinic. Recent advances in high throughput protein analytics provide confidence in our ability to assess productivity and product quality attributes at early stages of cell line development. However, one quality attribute has, until recently, been absent from the standard battery of analytical tests facilitating informed choices early in cell line selection: genetic sequence confirmation. Techniques historically used for mutation analysis, such as detailed mass spectrometry, have limitations on the sample number and turnaround times making it less attractive at early stages. Thus, we explored the utility of Next‐Generation Sequencing (NGS) as a solution to address these limitations. Amplicon sequencing is one such NGS technique that is robust, rapid, sensitive, and amenable to multiplexing, all of which are essential attributes for our purposes. Here we report a NGS method based upon amplicon sequencing that has been successfully incorporated into our cell line development workflow alongside other high‐throughput protein analytical assays. The NGS method has demonstrated its value by identifying at least one Chinese hamster ovary (CHO) clone expressing a variant form of the biotherapeutic in each of the four clinical programs in which it has been utilized. We believe this sequence confirmation method is essential to safely accelerating the time to clinical proof of concept of biotherapeutics, and guard against delays related to sequence mutations. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:813–817, 2016  相似文献   
58.
Defoliation of forest tree canopies by herbivores and other agents, leading to tree mortality and reduced productivity, threatens the ecological stability of forests globally. This study shows that long‐term control of a mammalian arboreal folivore (brushtail possums; Trichosurus vulpecula Phalangeridae) reduces crown dieback and increases foliage cover in browsing‐damaged canopy trees. We monitored indices of possum density, possum browsing, tree foliage cover and crown dieback for 20 years following initiation of possum control in 1994 that repeatedly reduced possum densities to near zero every 5–6 years and kept the population below 35% of pre‐control levels over the entire period. Observable possum browsing was recorded on 20–49% of individuals of three palatable tree species at the time of first control. Those percentages fell to zero after control and never exceeded 2–10% for individual species over the next 19 years. We recorded significant increases in foliage cover attributable to recovery from defoliation by possums for all three species during the first 10 years. Large increases in foliage cover occurred on individuals that were heavily browsed in 1994 (mean increases: 36–89%), but mean population increases were modest (3–19%) because only 10–19% of trees were initially heavily browsed. Twenty‐year mortality rates were similar for plants with, or without, initial possum browsing, indicating no residual impact of pre‐control browsing on tree mortality. Times for full recovery of crown foliage cover varied from 10 years for the youngest trees and faster growing species to more than 20 years for mature individuals of the slowest growing species.  相似文献   
59.
Both ecological and evolutionary mechanisms have been proposed to describe how natural communities become assembled at both regional and biogeographical scales. Yet, these theories have largely been developed in isolation. Here, we unite these separate views and develop an integrated eco‐evolutionary framework of community assembly. We use a simulation approach to explore the factors determining the interplay between ecological and evolutionary mechanisms systematically across spatial scales. Our results suggest that the same set of ecological and evolutionary processes can determine community assembly at both regional and biogeographical scales. We find that the importance of evolution and community monopolization effects, defined as the eco‐evolutionary dynamics that occur when local adaptation of early established immigrants is fast enough to prevent the later immigration of better pre‐adapted species, are not restricted to adaptive radiations on remote islands. They occur at dispersal rates of up to ten individuals per generation, typical for many species at the scale of regional metacommunities. Dispersal capacity largely determines whether ecological species sorting or evolutionary monopolization structure metacommunity diversity and distribution patterns. However, other factors related to the spatial scale at which community assembly processes are acting, such as metacommunity size and the proportion of empty patches, also affect the relative importance of ecology versus evolution. We show that evolution often determines community assembly, and this conclusion is robust to a wide range of assumptions about spatial scale, mode of reproduction, and environmental structure. Moreover, we found that community monopolization effects occur even though species fully pre‐adapted to each habitat are abundant in the metacommunity, a scenario expected a priori to prevent any meaningful effect of evolution. Our results strongly support the idea that the same eco‐evolutionary processes underlie community assembly at regional and biogeographical scales.  相似文献   
60.
sam βada is a genome–environment association software, designed to search for signatures of local adaptation. However, pre‐ and postprocessing of data can be labour‐intensive, preventing wider uptake of the method. We have now developed R.SamBada, an r ‐package providing a pipeline for landscape genomic analysis based on sam βada , spanning from the retrieval of environmental conditions at sampling locations to gene annotation using the Ensembl genome browser. As a result, R.SamBada standardizes the landscape genomics pipeline and eases the search for candidate genes of local adaptation, enhancing reproducibility of landscape genomic studies. The efficiency and power of the pipeline is illustrated using two examples: sheep populations from Morocco with no evident population structure and Lidia cattle from Spain displaying population substructuring. In both cases, R.SamBada enabled rapid identification and interpretation of candidate genes, which are further discussed in the light of local adaptation. The package is available in the r CRAN package repository and on GitHub (github.com/SolangeD/R.SamBada).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号