首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   19篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   10篇
  2012年   9篇
  2011年   3篇
  2010年   8篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1968年   1篇
  1959年   1篇
  1951年   1篇
  1950年   1篇
  1946年   1篇
  1924年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
91.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   
92.
Forward head and rounded shoulder posture (FHRSP) is theorized to contribute to alterations in scapular kinematics and muscle activity leading to the development of shoulder pain. However, reported differences in scapular kinematics and muscle activity in those with forward head and rounded shoulder posture are confounded by the presence of shoulder pain. Therefore, the purpose of this study was to compare scapular kinematics and muscle activity in individuals free from shoulder pain, with and without FHRSP. Eighty volunteers were classified as having FHRSP or ideal posture. Scapular kinematics were collected concurrently with muscle activity from the upper and lower trapezius as well as the serratus anterior muscles during a loaded flexion and overhead reaching task using an electromagnetic tracking system and surface electromyography. Separate mixed model analyses of variance were used to compare three-dimensional scapular kinematics and muscle activity during the ascending phases of both tasks. Individuals with FHRSP displayed significantly greater scapular internal rotation with less serratus anterior activity, during both tasks as well as greater scapular upward rotation, anterior tilting during the flexion task when compared with the ideal posture group. These results provide support for the clinical hypothesis that FHRSP impacts shoulder mechanics independent of shoulder pain.  相似文献   
93.
Phosphorylation of proteins is an important mechanism used to regulate most cellular processes. Recently, we completed an extensive phosphoproteomic analysis of the core proteins that constitute the Saccharomyces cerevisiae centrosome. Here, we present a study of phosphorylation sites found on the mitotic exit network (MEN) proteins, most of which are associated with the cytoplasmic face of the centrosome. We identified 55 sites on Bfa1, Cdc5, Cdc14 and Cdc15. Eight sites lie in cyclin-dependent kinase motifs (Cdk, S/T-P), and 22 sites are completely conserved within fungi. More than half of the sites were found in centrosomes from mitotic cells, possibly in preparation for their roles in mitotic exit. Finally, we report phosphorylation site information for other important cell cycle and regulatory proteins.Key words: in vivo phosphorylation, yeast centrosome, mitotic exit network (MEN), cell cycle, protein kinase, Cdk (cyclin-dependent kinase)/Cdc28, Plk1 (polo-like kinase)/Cdc5Reversible protein phosphorylation leads to changes in targeting, structure and stability of proteins and is used widely to modulate biochemical reactions in the cell. We are interested in phosphoregulation of centrosome duplication and function in the yeast Saccharomyces cerevisiae. Centrosomes nucleate microtubules and, upon duplication during the cell cycle, form the two poles of the bipolar mitotic spindle used to segregate replicated chromosomes into the two daughter cells. Timing and spatial cues are highly regulated to ensure that elongation of the mitotic spindle and separation of sister chromatids occur prior to progression into late telophase and initiation of mitotic exit. The mitotic exit network (MEN) regulates this timing through a complex signaling cascade activated at the centrosome that triggers the end of mitosis, ultimately through mitotic cyclin-dependent kinase (Cdk) inactivation (reviewed in ref. 1).The major components of the MEN pathway (Fig. 1) are a Ras-like GTPase (Tem1), an activator (Lte1) with homology to nucleotide exchange factors, a GTPase-activating protein (GAP) complex (Bfa1/Bub2), several protein kinases [Cdc5 (Plk1 in humans), Cdc15 and Dbf2/Mob1] and Cdc14 phosphatase (reviewed in ref. 25). Tem1 initiates the signal for the MEN pathway when switched to a GTP-active state. Prior to activation at anaphase, it is held at the centrosome in an inactive GDP-bound state by an inhibiting GAP complex, Bfa1/Bub2.6 The Bfa1/Bub2 complex and the inactive Tem1 are localized at the mother centrosome destined to move into the budded cell upon chromosome segregation, whereas the activator Lte1 is localized at the tip of the budded cell. These separate localizations ensure that Lte1 and Tem1 only interact in late anaphase, when the mitotic spindle elongates.7,8 Lte1 has been thought to activate Tem1 as a nucleotide exchange factor, although more recent evidence suggests that it may instead affect Bfa1 localization.9 In addition, full activation of Tem1 is achieved through Cdc5 phosphorylation of the negative regulator Bfa1 10 and potentially through phosphorylation of Lte1. GTP-bound Tem1 is then able to recruit Cdc15 to the centrosome, allowing for Dbf2 activation.3 The final step in the MEN pathway is release of Cdc14 from the nucleolus, which is at least partially due to phosphorylation by Dbf211 an leads to mitotic cyclin degradation and inactivation of the mitotic kinase.2Open in a separate windowFigure 1Schematic representation of the MEN proteins and pathway. MEN protein localization is shown within a metaphase cell when mitotic exit is inhibited and in a late anaphase cell when mitotic exit is initiated. Primary inhibition and activation events are described below the cells.Recently, we performed a large-scale analysis of phosphorylation sites on the 18 core yeast centrosomal proteins present in enriched centrosomal preparations.12 In total, we mapped 297 sites on 17 of the 18 proteins and described their cell cycle regulation, levels of conservation and demonstrated defects in centrosome assembly and function resulting from mutating selected sites. MEN proteins were also identified in the centrosome preparations. This was expected, because Nud1, one of the 18 core centrosome components, is known to recruit several MEN proteins to the centrosome13 as part of its function in mitotic exit.14,15 As phosphorylation is essential to several steps in the MEN pathway, beginning with recruitment of Bfa1/Bub2 by phosphorylated Nud1,15 we were interested in mapping in vivo phosphorylation sites on the MEN proteins associated with centrosomes and identifying when they occur during the cell cycle.We combined centrosome enrichment with mass spectrometry analysis to examine phosphorylation from asynchronously growing cells.12 Centrosomes were also prepared from cells arrested in G1 and mitosis12 to monitor potentially cell cycle-regulated sites. We obtained significant coverage of a number of the MEN proteins, several of which have human homologs (and33, column 1), of which eight sites lie within Cdk/Cdc28 motifs [S/T(P)], (23 Mob1 and Dbf2 are known phosphoproteins24 for which we observed peptide coverage but no phosphorylation. Surprisingly, we did not detect phosphorylation on Bub2 despite the high peptide coverage; it is possible that the mitotic centrosome preparations (using a Cdc20 depletion protocol) affect the phosphorylation state of Bub2, as Bub2 is required for mitotic exit arrest in cdc20 mutants.25 Additionally, specific phosphorylation sites have not been mapped on Bub2, suggesting that modifications on this protein may be difficult to observe by mass spectrometry. Lte1 does not localize to the centrosome, and we did not recover Lte1 peptides in our preparations. Many phosphorylation events on MEN proteins were observed in mitotic centrosomal preparations, most likely in preparation for their subsequent role in exit from mitosis (
MEN ProteinSequence CoverageTotal SitesS/T (P) SitesHuman Homologs
Bfa198%352N/A
Cdc1480%102CDC14A, 14B2
Cdc1512%31MST1, STK4
Cdc541%73PLK1, PLK2, PLK3
Bub267%--N/A
Tem118%--RAB22, RAB22A
Mob113%--MOB1B, 1A, 2A, 2B
Dbf22%--STK38, LATS1
TOTAL558
Open in a separate window

Table 2

Cell cycle regulators of MEN proteins
Cell Cycle Regulator
CdkCdc5Cdc14Dbf2
Bfa16,10,23,2425
Cdc14212611
Cdc521,27
Cdc15282831
Open in a separate window

Table 3

All phosphorylation sites identified in MEN proteins Bfa1, Cdc14, Cdc15 and Cdc5
Open in a separate window
Open in a separate window
Open in a separate windowConservation of domains or of individual residues of proteins is often correlated with function.26 We utilized a protein fungal alignment tool (SGD: www.yeastgenome.org/) to analyze the conservation of the individual phosphorylated residues among selected Saccharomyces strains. If an amino acid substitution occurred, we noted whether the alternate residue could also be phosphorylated [serine (S) or threonine (T)], or whether it mimicked phosphorylation with a negative charge [aspartic (D) or glutamic (E) acid]. Using these criteria with the 55 phosphorylation sites, we found 22 that were completely identical among the fungi, two that were conserved as potential phosphorylation sites (6 Interestingly, Cdc5-T238 is also conserved in human polo-like kinases (Plk1–3). In another study, Mohl et al. tested nonphosphorylatable mutations of Dbf2 kinase motifs adjacent to the nuclear localization domain within Cdc14 phosphatase. One mutant allele of CDC14 wherein four Dbf2 motif sites were changed to alanines, includes our mapped site, S546 (20 While exceptionally rich clusters of phosphorylation sites (≥ 5/50 residues) are rare in the yeast proteome,27 the dense negative charge associated with phosphorylation clusters can enhance the rapidity and magnitude of the resulting cellular event. Two of the MEN proteins examined, Bfa1 (24 out of 35 total sites) and Cdc14 (5 out of 10 total sites), showed evidence of phosphorylation clustering (Fig. 2). Mutating groups of these clustered sites could provide insight into how the negatively charged regions affect protein localization and/or function.Open in a separate windowFigure 2Clustering of phosphorylation sites within the MEN proteins, Bfa1 and Cdc14. All phosphorylation sites within Bfa1 and Cdc14 are shown along the X-axis, representing the primary protein sequence and the Y-axis denoting the number of sites. Sites are considered clustered if there are at least 5 sites with a density ≥ 1 per 10 amino acids, and are marked with a horizontal bracket.In addition to proteins known to be associated with the yeast centrosome, such as the MEN proteins described, we recovered limited peptides from a number of other cell cycle and regulatory proteins. The high sensitivity with which mass spectrometry can detect modifications on proteins enabled the identification of in vivo phosphorylation sites that are cataloged in Open in a separate windowOpen in a separate windowOur large-scale centrosome enrichment and phosphorylation analysis has yielded a rich library of phosphorylation events on core centrosomal components, those involved in the mitotic exit network and additional regulatory proteins. Information regarding the phosphorylation state of various proteins throughout the cell will be useful in studying their control and function.?

Table 4

Summary of phosphorylation sites identified in centrosomes from different cell cycle stages and their conservation
Open in a separate window
Open in a separate window  相似文献   
94.
A Mathematical Model of Force Generation by Flexible Kinetochore-Microtubule Attachments     
James?P. Keener  Blerta Shtylla 《Biophysical journal》2014,106(5):998-1007
Important mechanical events during mitosis are facilitated by the generation of force by chromosomal kinetochore sites that attach to dynamic microtubule tips. Several theoretical models have been proposed for how these sites generate force, and molecular diffusion of kinetochore components has been proposed as a key component that facilitates kinetochore function. However, these models do not explicitly take into account the recently observed flexibility of kinetochore components and variations in microtubule shape under load. In this paper, we develop a mathematical model for kinetochore-microtubule connections that directly incorporates these two important components, namely, flexible kinetochore binder elements, and the effects of tension load on the shape of shortening microtubule tips. We compare our results with existing biased diffusion models and explore the role of protein flexibility inforce generation at the kinetochore-microtubule junctions. Our model results suggest that kinetochore component flexibility and microtubule shape variation under load significantly diminish the need for high diffusivity (or weak specific binding) of kinetochore components; optimal kinetochore binder stiffness regimes are predicted by our model. Based on our model results, we suggest that the underlying principles of biased diffusion paradigm need to be reinterpreted.  相似文献   
95.
An activity-dependent assay for ricin and related RNA N-glycosidases based on electrochemiluminescence     
Keener WK  Rivera VR  Young CC  Poli MA 《Analytical biochemistry》2006,357(2):200-207
Synthetic biotinylated RNA substrates were cleaved by the combined actions of ricin holotoxin and a chemical agent, N,N'-dimethylethylenediamine. The annealing of the product with a ruthenylated oligodeoxynucleotide resulted in the capture of ruthenium chelate onto magnetic beads, enabling the electrochemiluminescence (ECL)-based detection of RNA N-glycosidase activities of toxins. ECL immunoassays and the activity assay exhibited similar limits of detection just below signals with 0.1 ng/ml of ricin; the ECL response was linear as the ricin concentration increased by two orders of magnitude. Activities were detected with other adenine-specific RNA N-glycosidases, including Ricinus communis agglutinin (RCA), saporin, and abrin II. The substrate that provided the greatest sensitivity was composed of a four-residue loop, GdAGA, in a hairpin structure. When the 2'-deoxyadenosine (dA) was substituted with adenosine (A), 2'-deoxyinosine, or 2'-deoxyuridine, toxin-dependent signals were abolished. Placing the GdAGA motif in a six-residue loop or replacing it with GdAdGA or GdAAA resulted in measurable activities and signal patterns that were reproducible for a given toxin. Data indicated that saporin and abrin II shared one pattern, while ricin and RCA shared a distinct pattern. A monoclonal antibody that enhanced the activities of ricin, RCA, and abrin II to different extents, thus improving the diagnostic potential of the assay, was identified .  相似文献   
96.
An easy and reliable method for establishment and maintenance of leaf and root cell cultures ofArabidopsis thaliana     
CL Encina  M Constantin  J Botella 《Plant Molecular Biology Reporter》2001,19(3):245-248
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.  相似文献   
97.
Chloride analysis using 3,3',5,5'-tetramethylbenzidine and chloroperoxidase     
Keener WK  Watwood ME 《Analytical biochemistry》2004,334(2):406-408
  相似文献   
98.
Molecular characterization of malarial parasites in captive passerine birds     
Schrenzel MD  Maalouf GA  Keener LL  Gaffney PM 《The Journal of parasitology》2003,89(5):1025-1033
Seven of 28 passerine birds that died in captivity were positive for malarial parasites by polymerase chain reaction targeting the mitochondrial cytochrome b (cytB) and apicoplast ribosomal RNA (rRNA) genes. Each bird was infected with a single parasite lineage having a unique genotype. Apicoplast rRNA sequences were present both in Haemoproteus spp. and Plasmodium spp. and had typically high adenosine + thymidine content. Phylogenies for cytB and apicoplast rRNA sequences were largely congruent and supported previous studies that suggest that Plasmodium-Haemoproteus spp. underwent synchronous speciation with their avian hosts, interrupted by sporadic episodes of host switching. Apicoplast phylogeny further indicated that Haemoproteus spp. are ancestral to Plasmodium spp. All the 7 infected passerine birds had histologic lesions of malaria, and malarial parasites may have contributed to the death of at least 4 animals. These findings provide new genetic data on passerine hematozoa, including initial sequences of apicoplast DNA, and emphasize the relevance of parasite prevalence, evolutionary relationships, and host switching to modern management and husbandry practices of captive birds.  相似文献   
99.
Changing concepts in plant hormone action   总被引:4,自引:0,他引:4  
Th.?GasparEmail author  C.?Kevers  O.?Faivre-Rampant  M.?Crèvecoeur  CL.?Penel  H.?Greppin  J.?Dommes 《In vitro cellular & developmental biology. Plant》2003,39(2):85-106
Summary A plant hormone is not, in the classic animal sense, a chemical synthesized in one organ, transported to a second organ to exert a chemical action to control a physiological event. Any phytohormone can be synthesized everywhere and can influence different growth and development processes at different places. The concept of physiological activity under hormonal control cannot be dissociated from changes in concentrations at the site of action, from spatial differences and changes in the tissue's sensitivity to the compound, from its transport and its metabolism, from balances and interactions with the other phytohormones, or in their metabolic relationships, and in their signaling pathways as well. Secondary messengers are also involved. Hormonal involvement in physiological processes can appear through several distinct manifestations (as environmental sensors, homeostatic regulators and spatio-temporal synchronizers, resource allocators, biotime adjusters, etc.), dependent on or integrated with the primary biochemical pathways. The time has also passed for the hypothesized ‘specific’ developmental hormones, rhizocaline, canlocaline, and florigen: root, stem, and flower formation result from a sequential control of specific events at the right places through a coordinated control by electrical signals, the known phytohormones and nonspecific molecules of primary and secondary metabolism, and involve both cytoplasmic and apoplastic compartments. These contemporary views are examined in this review.  相似文献   
100.
Isoaspartate in ribosomal protein S11 of Escherichia coli          下载免费PDF全文
David CL  Keener J  Aswad DW 《Journal of bacteriology》1999,181(9):2872-2877
Isoaspartyl sites, in which an aspartic acid residue is linked to its C-flanking neighbor via its beta-carboxyl side chain, are generally assumed to be an abnormal modification arising as proteins age. The enzyme protein L-isoaspartate methyltransferase (PIMT), present in many bacteria, plants, and animals, catalyzes the conversion of isoaspartate to normal alpha-linked aspartyl bonds and is thought to serve an important repair function in cells. Having introduced a plasmid into Escherichia coli that allows high-level expression of rat PIMT, we explored the possibility that the rat enzyme reduces isoaspartate levels in E. coli proteins, a result predicted by the repair hypothesis. The present study demonstrates that this is indeed the case; E. coli cells expressing rat PIMT had significantly lower isoaspartate levels than control cells, especially in stationary phase. Moreover, the distribution of isoaspartate-containing proteins in E. coli differed dramatically between logarithmic- and stationary-phase cultures. In stationary-phase cells, a number of proteins in the molecular mass range of 66 to 14 kDa contained isoaspartate, whereas in logarithmic-phase cells, nearly all of the detectable isoaspartate resided in a single 14-kDa protein which we identified as ribosomal protein S11. The near stoichiometric levels of isoaspartate in S11, estimated at 0.5 mol of isoaspartate per mol of S11, suggests that this unusual modification may be important for S11 function.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号