首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5858篇
  免费   407篇
  国内免费   9篇
  6274篇
  2023年   19篇
  2022年   53篇
  2021年   115篇
  2020年   59篇
  2019年   98篇
  2018年   136篇
  2017年   113篇
  2016年   134篇
  2015年   257篇
  2014年   251篇
  2013年   375篇
  2012年   459篇
  2011年   502篇
  2010年   288篇
  2009年   261篇
  2008年   408篇
  2007年   394篇
  2006年   403篇
  2005年   349篇
  2004年   330篇
  2003年   304篇
  2002年   300篇
  2001年   44篇
  2000年   38篇
  1999年   61篇
  1998年   96篇
  1997年   30篇
  1996年   49篇
  1995年   35篇
  1994年   31篇
  1993年   30篇
  1992年   30篇
  1991年   19篇
  1990年   19篇
  1989年   13篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   22篇
  1981年   12篇
  1980年   10篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
排序方式: 共有6274条查询结果,搜索用时 15 毫秒
71.
72.
The neural cell adhesion molecule (NCAM) forms a complex with p59fyn kinase and activates it via a mechanism that has remained unknown. We show that the NCAM140 isoform directly interacts with the intracellular domain of the receptor-like protein tyrosine phosphatase RPTPalpha, a known activator of p59fyn. Whereas this direct interaction is Ca2+ independent, formation of the complex is enhanced by Ca2+-dependent spectrin cytoskeleton-mediated cross-linking of NCAM and RPTPalpha in response to NCAM activation and is accompanied by redistribution of the complex to lipid rafts. Association between NCAM and p59fyn is lost in RPTPalpha-deficient brains and is disrupted by dominant-negative RPTPalpha mutants, demonstrating that RPTPalpha is a link between NCAM and p59fyn. NCAM-mediated p59fyn activation is abolished in RPTPalpha-deficient neurons, and disruption of the NCAM-p59fyn complex in RPTPalpha-deficient neurons or with dominant-negative RPTPalpha mutants blocks NCAM-dependent neurite outgrowth, implicating RPTPalpha as a major phosphatase involved in NCAM-mediated signaling.  相似文献   
73.
We have identified a new Saccharomyces cerevisiae gene, HIM1, mapped on the right arm of the chromosome IV (ORF YDR317w), mutations in which led to an increase in spontaneous mutation rate and elevated the frequencies of mutations, induced by UV-light, nitrous acid, ethylmethane sulfonate and methylmethane sulfonate. At the same time, him1 mutation did not result in the increase of the sensitivity to the lethal action of these DNA-damaging agents. We tested the induced mutagenesis in double mutants carrying him1 mutation and mutations in other repair genes: apn1, blocking base excision repair; rad2, rev3, and rad54, blocking three principal DNA repair pathways; pms1, blocking mismatch repair; hsm2 and hsm3 mutations, which lead to a mutator effect. Epistatic analysis showed a synergistic interaction of him1 with pms1, apn1, and rad2 mutations, and epistasis with the rev3, the rad54, the hsm2, and the hsm3. To elucidate the role of the HIM1 in control of spontaneous mutagenesis, we checked the repair of DNA mispaired bases in the him1 mutant and discovered that it was not altered in comparison to the wild-type strain. In our opinion, our results suggest that HIM1 gene participates in the control of processing of mutational intermediates appearing during error-prone bypass of DNA damage.  相似文献   
74.
Nucleic acid polymerases have evolved elaborate mechanisms that prevent incorporation of the non-cognate substrates, which are distinguished by both the base and the sugar moieties. While the mechanisms of substrate selection have been studied in single-subunit DNA and RNA polymerases (DNAPs and RNAPs, respectively), the determinants of substrate binding in the multisubunit RNAPs are not yet known. Molecular modeling of Thermus thermophilus RNAP-substrate NTP complex identified a conserved beta' subunit Asn(737) residue in the active site that could play an essential role in selection of the substrate ribose. We utilized the Escherichia coli RNAP model system to assess this prediction. Functional in vitro analysis demonstrates that the substitutions of the corresponding beta' Asn(458) residue lead to the loss of discrimination between ribo- and deoxyribonucleotide substrates as well as to defects in RNA chain extension. Thus, in contrast to the mechanism utilized by the single-subunit T7 RNAP where substrate selection commences in the inactive pre-insertion site prior to its delivery to the catalytic center, the bacterial RNAPs likely recognize the sugar moiety in the active (insertion) site.  相似文献   
75.
A population-based case-control study was conducted to estimate the radiation-related risk of thyroid cancer in persons who were exposed in childhood to (131)I from the Chernobyl accident of April 26, 1986 and to investigate the impact of uncertainties in individual dose estimates. Included were all 66 confirmed cases of primary thyroid cancer diagnosed from April 26, 1986 through September 1998 in residents of Bryansk Oblast, Russia, who were 0-19 years old at the time of the accident, along with two individually matched controls for each case. Thyroid radiation doses, estimated using a semi-empirical model based on environmental contamination data and individual characteristics, ranged from 0.00014 Gy to 2.73 Gy and had large uncertainties (median geometric standard deviation 2.2). The estimated excess relative risk (ERR) associated with radiation exposure, 48.7/Gy, was significantly greater than 0 (P = 0.00013) but had an extremely wide 95% confidence interval (4.8 to 1151/Gy). Adjusting for dose uncertainty nearly tripled the ERR to 138/Gy, although this was likely an overestimate due to limitations in the modeling of dose uncertainties. The radiation-related excess risk observed in this study is quite large, especially if the uncertainty of dose estimation is taken into account, but is not inconsistent with estimates previously reported for risk after (131)I exposure or acute irradiation from external sources.  相似文献   
76.
The dynamics of interaction of the insulin receptor (IR) with Grb14 was monitored, in real time, in living human embryonic kidney cells, using bioluminescence resonance energy transfer (BRET). We observed that insulin rapidly and dose-dependently stimulated this interaction. We also observed that insulin-induced BRET between the IR and protein tyrosine phosphatase 1B (PTP1B) was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the IR, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the extracellular signal-regulated kinase pathway. Increased Grb14 expression in human liver-derived HuH7 cells also seemed to specifically decrease the phosphorylation of Y972. Our work therefore suggests that Grb14 may regulate signalling through the IR by controlling its tyrosine dephosphorylation in a site-specific manner.  相似文献   
77.
78.
79.
Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.  相似文献   
80.
Intracellular transport of membrane organelles occurs along microtubules (MTs) and actin filaments (AFs). Although transport along each type of the cytoskeletal tracks is well characterized, the switching between the two types of transport is poorly understood because it cannot be observed directly in living cells. To gain insight into the regulation of the switching of membrane organelles between the two major transport systems, we developed a novel approach that combines live cell imaging with computational modeling. Using this approach, we measured the parameters that determine how fast membrane organelles switch back and forth between MTs and AFs (the switching rate constants) and compared these parameters during different signaling states. We show that regulation involves a major change in a single parameter: the transferring rate from AFs onto MTs. This result suggests that MT transport is the defining factor whose regulation determines the choice of the cytoskeletal tracks during the transport of membrane organelles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号