排序方式: 共有81条查询结果,搜索用时 15 毫秒
21.
22.
Pirutin SK Turovetskiĭ VB Kedrov AV Kudriashov IuB Shaĭtan KV Rubin AB 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2012,52(3):252-256
Our study has shown that the damaging effect of hydroxylated fullerene C60(OH)25 on mouse peritoneal macrophage plasma membranes increased when we enlarged the concentration of fullerene in the incubation media (from 0.005 to 0.5 mg/ml), the incubation temperature (from 22 degrees C to 37 degrees C) and the time of incubation (from 30 to 90 min). In conditions of the H2O2-induced membrane damage, fullerene was observed to intensify the H2O2-induced damaging effect at a concentration of 0.05 mg/ml and reduce it at a concentration of 0.5 mg/ml. In conditions of the UV-induced membrane damage, it was discovered that the damaging effect of UV increased when C60(OH)25 nanoparticles were added to the incubation media before irradiation and decreased when they were added after irradiation. Eventual participation of ROS in damaging effects of C60(OH)25 was discussed. 相似文献
23.
Summary Tunicamycin and 2-deoxy-D-glucose were applied toXenopus laevis embryos in the first cleavage furrow, blastula and early gastrula stages. No effect was observed with 2-deoxy-D-glucose up to the concentration 0.1 M. The effect of Tunicamycin is dose- and stage-dependent. At the concentration of 5 g/ml cleaving embryos are arrested at the onset of gastrulation and their cells exhibit decreased intercellular adhesivity, while embryos treated in the blastula and early gastrula stages may develop up to the late neurula and tail-bud stage, respectively. Higher concentrations (up to 20 g/ml) drastically affect cleavage. Concentrations of 4 to 1 g/ml allow embryos to develop up to more advanced stages; however, developmental defects are the rule. Concentrations of less than 1 g/ml do not affect development. 相似文献
24.
Belosjorow S Bolle I Duschin A Heusch G Schulz R 《American journal of physiology. Heart and circulatory physiology》2003,284(3):H927-H930
Pretreatment with tumor necrosis factor-alpha (TNF-alpha) antibodies abolishes myocardial infarct size reduction by late ischemic preconditioning (IP). Whether or not TNF-alpha is also important for myocardial infarct size reduction by classic IP is unknown. Anesthetized rabbits were untreated (group 1, n = 7), classically preconditioned by 5 min left coronary artery occlusion/10 min reperfusion (group 2, n = 6), or pretreated with TNF-alpha antibodies without (group 3, n = 6) or with IP (group 4, n = 6) before undergoing 30 min of occlusion and 180 min of reperfusion. Infarct size in group 1 was 44 +/- 11 (means +/- SD)% of the area at risk. With a comparable area at risk, infarct size was reduced to 13 +/- 7%, 23 +/- 8%, and 19 +/- 12% (all P < 0.05) in groups 2, 3, and 4, respectively. The circulating TNF-alpha concentration was increased during ischemia in group 1 from 752 +/- 403 to 1,542 +/- 482 U/ml (P < 0.05) but remained unchanged in all other groups. Circulating TNF-alpha concentration during ischemia and infarct size correlated in all groups (r = 0.76). IP, TNF-alpha antibodies, and the combined approach reduced infarct size to a comparable extent. Therefore, the question of whether or not TNF-alpha is causally involved in the infarct size reduction by IP in rabbits could not be answered. 相似文献
25.
Merklinger E Gofman Y Kedrov A Driessen AJ Ben-Tal N Shai Y Rapaport D 《The Biochemical journal》2012,442(2):381-389
The MOM (mitochondrial outer membrane) contains SA (signal-anchored) proteins that bear at their N-terminus a single hydrophobic segment that serves as both a mitochondrial targeting signal and an anchor at the membrane. These proteins, like the vast majority of mitochondrial proteins, are encoded in the nucleus and have to be imported into the organelle. Currently, the mechanisms by which they are targeted to and inserted into the OM (outer membrane) are unclear. To shed light on these issues, we employed a recombinant version of the SA protein OM45 and a synthetic peptide corresponding to its signal-anchor segment. Both forms are associated with isolated mitochondria independently of cytosolic factors. Interaction with mitochondria was diminished when a mutated form of the signal-anchor was employed. We demonstrate that the signal-anchor peptide acquires an α-helical structure in a lipid environment and adopted a TM (transmembrane) topology within artificial lipid bilayers. Moreover, the peptide's affinity to artificial membranes with OM-like lipid composition was much higher than that of membranes with ER (endoplasmic reticulum)-like lipid composition. Collectively, our results suggest that SA proteins are specifically inserted into the MOM by a process that is not dependent on additional proteins, but is rather facilitated by the distinct lipid composition of this membrane. 相似文献
26.
The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells 总被引:7,自引:0,他引:7
Djordjevic T Pogrebniak A BelAiba RS Bonello S Wotzlaw C Acker H Hess J Görlach A 《Free radical biology & medicine》2005,38(5):616-630
Endothelial dysfunction is characterized by increased levels of reactive oxygen species (ROS) and a prothrombotic state. The mechanisms linking thrombosis to ROS production in the endothelium are not well understood. We investigated the role of thrombin in regulating NADPH oxidase-dependent ROS production and expression of its subunit p22phox in the endothelial cell line EaHy926. Thrombin elicited a biphasic increase in ROS generation peaking within 15 min, but also at 3 h. The delayed response was accompanied by increased p22phox mRNA and protein expression. Two-photon confocal laser microscopy showed colocalization between p22phox and ROS production. Antioxidant treatment with vitamin C or diphenyleneiodonium abrogated thrombin-induced ROS production and p22phox expression, whereas H2O2 elevated ROS production and p22phox levels. Both responses were dependent on p38 MAP kinase and phosphatidylinositol-3-kinase (PI3 kinase)/Akt. Finally, p22phox was required for thrombin- or H2O2-stimulated proliferation. These data show that thrombin rapidly increases ROS production in endothelial cells, resulting, via activation of p38 MAP kinase and PI3 kinase/Akt, in upregulation of p22phox accompanied by a delayed increase in ROS generation and enhanced proliferation. These findings suggest a positive feedback mechanism whereby ROS, possibly generated by the NADPH oxidase, lead to elevated levels of p22phox and, thus, sustained ROS generation as is observed in endothelial dysfunction. 相似文献
27.
Simon W. Rothwell Phillip J. Stansfeld Laricia Bragg Alexej Verkhratsky R. Alan North 《The Journal of biological chemistry》2014,289(2):618-626
The ionic pore of the P2X receptor passes through the central axis of six transmembrane (TM) helices, two from each of three subunits. Val48 and Ile328 are at the outer end of TM1 and TM2, respectively. Homology models of the open and closed states of P2X2 indicate that pore opening is associated with a large lateral displacement of Ile328. In addition, molecular dynamics simulations suggest that lipids enter the interstices between the outer ends of the TM domains. The P2X2(I328C) receptor was activated by propyl-methanethiosulfonate (MTS) as effectively as by ATP, but cysteine substitutions elsewhere in TM2 had no such effect. Other lipophilic MTS compounds (methyl, ethyl, and tert-butylethyl) had a similar effect but not polar MTS. The properties of the conducting pathway opened by covalent attachment of propyl-MTS were the same as those opened by ATP, with respect to unitary conductance, rectification, and permeability of N-methyl-d-glucamine. The ATP-binding residue Lys69 was not required for the action of propyl-MTS, although propyl-MTS did not open P2X2(K308A/I328C) receptors. The propyl-MTS did not open P2X2 receptors in which the Val48 side chain was removed (P2X2(V48G/I328C)). The results suggest that an interaction between Val48 and Ile328 stabilizes the closed channel and that this is broken by covalent attachment of a larger lipophilic moiety at the I328C receptors. Lipid intercalation between the separating TM domains during channel opening would be facilitated in P2X2(I328C) receptors with attached propyl-MTS. The results are consistent with the channel opening mechanism proposed on the basis of closed and open crystal structures and permit the refinement of the position of the TMs within the bilayer. 相似文献
28.
Free energy of membrane protein unfolding derived from single-molecule force measurements 总被引:1,自引:0,他引:1 下载免费PDF全文
Preiner J Janovjak H Rankl C Knaus H Cisneros DA Kedrov A Kienberger F Muller DJ Hinterdorfer P 《Biophysical journal》2007,93(3):930-937
Mechanical single-molecule techniques offer exciting possibilities to investigate protein folding and stability in native environments at submolecular resolution. By applying a free-energy reconstruction procedure developed by Hummer and Szabo, which is based on a statistical theorem introduced by Jarzynski, we determined the unfolding free energy of the membrane proteins bacteriorhodopsin (BR), halorhodopsin, and the sodium-proton antiporter NhaA. The calculated energies ranged from 290.5 kcal/mol for BR to 485.5 kcal/mol for NhaA. For the remarkably stable BR, the equilibrium unfolding free energy was independent of pulling rate and temperature ranging between 18 and 42 degrees C. Our experiments also revealed heterogeneous energetic properties in individual transmembrane helices. In halorhodopsin, the stabilization of a short helical segment yielded a characteristic signature in the energy profile. In NhaA, a pronounced peak was observed at a functionally important site in the protein. Since a large variety of single- and multispan membrane proteins can be tackled in mechanical unfolding experiments, our approach provides a basis for systematically elucidating energetic properties of membrane proteins with the resolution of individual secondary-structure elements. 相似文献
29.
The heterotrimeric SecYEG complex comprises a protein‐conducting channel in the bacterial cytoplasmic membrane. SecYEG functions together with the motor protein SecA in preprotein translocation. Here, we have addressed the functional oligomeric state of SecYEG when actively engaged in preprotein translocation. We reconstituted functional SecYEG complexes labelled with fluorescent markers into giant unilamellar vesicles at a natively low density. Förster's resonance energy transfer and fluorescence (cross‐) correlation spectroscopy with single‐molecule sensitivity allowed for independent observations of the SecYEG and preprotein dynamics, as well as complex formation. In the presence of ATP and SecA up to 80% of the SecYEG complexes were loaded with a preprotein translocation intermediate. Neither the interaction with SecA nor preprotein translocation resulted in the formation of SecYEG oligomers, whereas such oligomers can be detected when enforced by crosslinking. These data imply that the SecYEG monomer is sufficient to form a functional translocon in the lipid membrane. 相似文献
30.
Regulatory mechanisms of ion and solute transporters are in focus of biomedical and biochemical studies and build a key for disease therapies. Inhibition of sodium/proton exchangers efficiently prevents ischemic heart disease and reperfusion development in humans, but molecular mechanisms behind are not clear. Using single-molecule force spectroscopy we observe the binding of the inhibitor 2-aminoperimidine (AP) to sodium/proton antiporters NhaA from Escherichia coli. Deactivating interactions were significantly suppressed at enhanced sodium concentrations of 200 mM as well as in the pH-locked inactive conformation of NhaA. New molecular interactions were quantified and localized within the protein occurring upon a competitive inhibitor binding. The inhibitor, which was targeted and bound to the ligand-binding pocket, altered interactions established at alpha-helix IX. These molecular mechanisms deactivating the antiporter were different to those established upon ligand binding and activation of NhaA. 相似文献