首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1586篇
  免费   116篇
  国内免费   111篇
  2024年   2篇
  2023年   20篇
  2022年   31篇
  2021年   71篇
  2020年   55篇
  2019年   54篇
  2018年   48篇
  2017年   46篇
  2016年   72篇
  2015年   97篇
  2014年   109篇
  2013年   120篇
  2012年   113篇
  2011年   139篇
  2010年   79篇
  2009年   74篇
  2008年   87篇
  2007年   74篇
  2006年   93篇
  2005年   58篇
  2004年   60篇
  2003年   36篇
  2002年   35篇
  2001年   20篇
  2000年   17篇
  1999年   29篇
  1998年   21篇
  1997年   24篇
  1996年   26篇
  1995年   20篇
  1994年   13篇
  1993年   9篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有1813条查询结果,搜索用时 15 毫秒
171.
The inactive X chromosome of female mammals displays several properties of heterochromatin including late replication, histone H4 hypoacetylation, histone H3 hypomethylation at lysine-4, and methylated CpG islands. We show that cre-Lox-mediated excision of 21 kb from both Xist alleles in female mouse fibroblasts led to the appearance of two histone modifications throughout the inactive X chromosome usually associated with euchromatin: histone H4 acetylation and histone H3 lysine-4 methylation. Despite these euchromatic properties, the inactive X chromosome was replicated even later in S phase than in wild-type female cells. Homozygosity for the deletion also caused regions of the active X chromosome that are associated with very high concentrations of LINE-1 elements to be replicated very late in S phase. Extreme late replication is a property of fragile sites and the 21-kb deletions destabilized the DNA of both X chromosomes, leading to deletions and translocations. This was accompanied by the phosphorylation of p53 at serine-15, an event that occurs in response to DNA damage, and the accumulation of gamma-H2AX, a histone involved in DNA repair, on the X chromosome. The Xist locus therefore maintains the DNA stability of both X chromosomes.  相似文献   
172.
The genipin cross-linked alginate-chitosan (GCAC) microcapsule, composed of an alginate core and a genipin cross-linked chitosan membrane, was recently proposed for live cell encapsulation and other delivery applications. This article for the first time describes the details of the microcapsule membrane characterization using a noninvasive and in situ method without any physical or chemical modifications on the samples. Results showed that the cross-linking reaction generated the fluorescent chitosan-genipin conjugates. The cross-linked chitosan membrane was clearly visualized by confocal laser scanning microscopy (CLSM). A straightforward assessment on the membrane thickness and relative intensity was successfully achieved. CLSM studies showed that the shell-like cross-linked chitosan membranes of approximately 37 microm in thickness were formed surrounding the microcapsule. The reaction variables, including cross-linking temperature and time significantly affected the fluorescence intensity of the membranes. Elevating the cross-linking temperature from 4 to 37 degrees C drastically intensified the membrane fluorescence, suggesting the attainment of a high degree of cross-linking on the chitosan membrane. Extended cross-linking time altered the cross-linked membranes in modulation. Although genipin concentration and cross-linking time had little effects on the membrane thickness, cross-linking at higher temperatures tended to form relatively thinner membranes.  相似文献   
173.
Eulaliopsis binata, which is a close relative of cereal crops, was recognized as an important research material owing to its high frequency of apospory and autonomous endosperm formation. However, little information is known about its genomics and regulatory pathway participating in reproductive development. For the first step to understand molecular basis in sabaigrass (E. binata), a SMART complementary DNA library from the inflorescence tissue was constructed and characterized. The titers of original and amplified libraries were 5.53 × 106 and 1.49 × 1010 pfu/ml, respectively. The percentage of recombinants was 96% in the original library. Analysis of sequencing results of 398 out of 437 randomly picked clones showed that 271 (68.1%) expressed sequence tags (ESTs) exhibited significant similarity with known putative functional nucleotide sequences in the GenBank databases, 25 (6.3%) ESTs have significant matches with hypothetical proteins, putative proteins, and unknown proteins, and the other 25.6% ESTs had no significant similarity to sequences in the public databases. Based on molecular function of GO annotation, the four most abundant terms are nucleotide binding, hydrolase activity, ion binding, and protein binding, and these genes were involved in 61 different pathways using the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Besides, simple sequence repeats detection in 398 ESTs was carried out, and several genes were chosen to perform expression analysis. This report represents a first step in expanding molecular-genetic analyses in E. binata and can be used to optimally mine useful information from a relatively small data set.  相似文献   
174.
Polyamines regulate multiple signaling pathways and are implicated in many aspects of cellular functions, but the exact molecular processes governed by polyamines remain largely unknown. In response to environmental stress, repression of translation is associated with the assembly of stress granules (SGs) that contain a fraction of arrested mRNAs and are thought to function as mRNA storage. Here we show that polyamines modulate the assembly of SGs in normal intestinal epithelial cells (IECs) and that induced SGs following polyamine depletion are implicated in the protection of IECs against apoptosis. Increasing the levels of cellular polyamines by ectopic overexpression of the ornithine decarboxylase gene decreased cytoplasmic levels of SG-signature constituent proteins eukaryotic initiation factor 3b and T-cell intracellular antigen-1 (TIA-1)-related protein and repressed the assembly of SGs induced by exposure to arsenite-induced oxidative stress. In contrast, depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine increased cytoplasmic eukaryotic initiation factor 3b and TIA-1 related protein abundance and enhanced arsenite-induced SG assembly. Polyamine-deficient cells also exhibited an increase in resistance to tumor necrosis factor-α/cycloheximide-induced apoptosis, which was prevented by inhibiting SG formation with silencing SG resident proteins Sort1 and TIA-1. These results indicate that the elevation of cellular polyamines represses the assembly of SGs in normal IECs and that increased SGs in polyamine-deficient cells are crucial for increased resistance to apoptosis.  相似文献   
175.
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in?vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB.  相似文献   
176.
177.
A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-κB (pNF-κB), TNFα and IL-1β. Silencing TLR4 with siRNA reduced the expression of pJNK, TNFα and IL-1β, but not pNF-κB in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNFα and IL-1β. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-κB. Inhibition of NF-κB also reduced the expression of TNFα and IL-1β. Nod1 ligand, DAP induced the upregulation of pNF-κB which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-κB is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-κB pathways is involved in the expression of TNFα and IL-1β.  相似文献   
178.
The B3GNT5 gene is a candidate for the F4ab/ac receptor conferring susceptibility to enterotoxigenic Escherichia coli (ETEC) F4ab/ac in pigs. In this study, we screened mutations in the complete coding region of the porcine B3GNT5 gene and identified four SNPs in the 3' untranslated regions. We genotyped the four SNPs across a large-scale White Duroc × Chinese Erhualian F2 resource population (total F2 = 755) and 292 purebred piglets representing 15 Chinese and Western breeds. We found that the g.1476G→A locus and haplotypes [A;T;G;T] and [A;G;G;T] had significant association with susceptibility to ETEC F4ac in the resource population. None of the B3GNT5 polymorphisms and haplotypes was associated with susceptibility to ETEC F4ab/ac in outbred piglets. This result, together with other reports, supports the conclusion that B3GNT5 is not the responsible gene encoding the ETEC F4ab/ac receptors.  相似文献   
179.
The purpose of the study was to investigate the anti-fibrotic effect and the potential mechanisms of action of betulinic acid (BA) against hepatic fibrosis in vivo and in vitro. BA is an active compound isolated from the bark of the birch tree Betula spp. (Betulaceae). Liver fibrosis was induced by intraperitoneal injections of thioacetamide (TAA, 200mg/kg) twice weekly for 6weeks in Wistar rats. The administration of BA (20 or 50mg/kg) was started following TAA injections and was continued for 6 or 8weeks to evaluate both the preventive and the protective effects. BA demonstrated great efficacy in preventing and curing hepatic fibrosis via attenuating the TAA-mediated increases in liver tissue hydroxyproline and α-smooth muscle actin (α-SMA). In vitro, BA effectively decreased the HSC-T6 cell viability induced by TNF-α and showed low toxicity in normal human chang liver cells. Moreover, BA significantly attenuated the expression of α-SMA and tissue inhibitor of metalloproteinase-1 (TIMP-1) and increased the levels of matrix metalloprotease (MMP)-13. BA also inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and the activation of nuclear factor-κB (NF-κB) in a time-dependent manner. This study provides evidence that BA exerts a significant anti-fibrosis effect by modulating the TLR4/MyD88/NF-κB signaling pathway.  相似文献   
180.
Cysteine-rich protein 61 (Cyr61)/CCN1 is a product of an immediate early gene and functions in mediating cell adhesion and inducing cell migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) promotes FLS proliferation and participates in RA pathogenesis with the IL-17-dependent pathway. However, whether Cyr61 in turn regulates Th17 cell differentiation and further enhances inflammation of RA remained unknown. In the current study, we explored the potential role of Cyr61 as a proinflammatory factor in RA pathogenesis. We found that Cyr61 treatment dramatically induced IL-6 production in FLS isolated from RA patients. Moreover, IL-6 production was attenuated by Cyr61 knockdown in FLS. Mechanistically, we showed that Cyr61 activated IL-6 production via the αvβ5/Akt/NF-κB signaling pathway. Further, using a coculture system consisting of purified CD4(+) T cells and RA FLS, we found that RA FLS stimulated Th17 differentiation, and the pro-Th17 differentiation effect of RA FLS can be attenuated or stimulated by Cyr61 RNA interference or addition of exogenous Cyr61, respectively. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the anti-Cyr61 mAb led to reduction of IL-6 levels, decrease of Th17 response, and attenuation of inflammation and disease progression in vivo. Taken together, our results reveal a novel role of Cyr61 in promoting Th17 development in RA via upregulation of IL-6 production by FLS, thus adding a new layer into the functional interplay between FLS and Th17 in RA pathogenesis. Our study also suggests that targeting of Cyr61 may represent a novel strategy in RA treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号