首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   53篇
  378篇
  2021年   8篇
  2020年   3篇
  2017年   6篇
  2016年   7篇
  2015年   15篇
  2014年   10篇
  2013年   11篇
  2012年   10篇
  2011年   13篇
  2010年   7篇
  2009年   14篇
  2008年   13篇
  2007年   6篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   3篇
  2002年   7篇
  2001年   11篇
  2000年   13篇
  1999年   14篇
  1998年   9篇
  1996年   11篇
  1995年   4篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   9篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   11篇
  1981年   10篇
  1980年   3篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1967年   2篇
  1938年   2篇
  1932年   2篇
  1930年   2篇
排序方式: 共有378条查询结果,搜索用时 31 毫秒
51.
52.
53.
We redemonstrate that SwrA is essential for swarming motility in Bacillus subtilis, and we reassert that laboratory strains of B. subtilis do not swarm. Additionally, we find that a number of other genes, previously reported to be required for swarming in laboratory strains, are dispensable for robust swarming motility in an undomesticated strain. We attribute discrepancies in the literature to a lack of reproducible standard experimental conditions, selection for spontaneous swarming suppressors, inadvertent genetic linkage to swarming mutations, and auxotrophy.Many species of bacteria are capable of flagellum-mediated swimming motility in liquid broth. Of those species, a subset is also capable of a related, but genetically separable, form of flagellum-mediated surface movement called swarming motility (17). Examples of swarming-proficient species include Proteus mirabilis, Vibrio parahaemolyticus, Serratia marcescens, Escherichia coli, Salmonella enterica, and Bacillus subtilis (1, 15, 16, 20, 28). In general, swarming requires a surfactant or wetting agent to reduce surface tension, an increase in flagellar number per cell, and other genetic features that are distinct from swimming (7, 14).There is confusion in the literature concerning the genetic requirements of the swarming phenotype of B. subtilis. It is generally accepted that the ancestral undomesticated strain B. subtilis 3610 exhibits robust swarming motility (18, 20, 33). Swarming motility of strain 3610 requires the production of a secreted surfactant, called surfactin (6, 20), to reduce surface tension and permit surface spreading, and it also requires the protein SwrA to activate flagellar biosynthesis gene expression and increase the number of flagella on the cell surface (5, 20). Some reports claim that domesticated derivatives of 3610, such as the commonly used laboratory strain 168, are also swarming proficient (10, 18, 19, 24). Strain 168, however, is defective in both surfactin production (9, 25) and SwrA (5, 21, 31), and thus, swarming 168 strains challenge the genetic definition of swarming motility. Our lab has never observed swarming in laboratory strains, and here we investigated swarming motility in a reportedly swarming-proficient 168 strain.We obtained a reportedly swarming-proficient 168 strain (13) (generous gift of Simone Séror, Orsay University, Paris-Sud, France) (Table (Table1)1) and compared its swarming phenotype to that of 3610 under our standard conditions (20). Swarm plates were prepared one day prior to use with 25 ml of LB medium (10 g Bacto tryptone, 5 g Bacto yeast extract, 5 g NaCl per liter) fortified with 0.7% Bacto agar. To minimize water on the agar surface and thus minimize the potentially confounding influence of swimming motility, plates were dried 20 min prior to inoculation and 10 min postinoculation open-faced in a laminar flow hood. For qualitative swarm assays, plates were centrally inoculated with cells from a freshly grown overnight colony using a sterile stick. For quantitative swarm expansion assays, 1 ml of cells grown to mid-exponential phase (optical density at 600 nm [OD600], 0.5) was resuspended in PBS buffer (8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4 per liter, pH 7.0) containing 0.5% India ink (Higgins) to an OD600 of 10 and centrally spotted (10 μl). Swarm expansion was measured at 0.5-h intervals along a transect on the plate. Plates were incubated at 37°C in 20 to 30% humidity. Whereas strain 3610 was swarming proficient, strain 168 (Orsay) was swarming deficient (Fig. (Fig.1A).1A). Thus, strain 168 (Orsay) appeared to behave similarly to all other laboratory strains we have tested previously (20, 21).Open in a separate windowFIG. 1.Swarming motility on LB and B media. In qualitative plate images, colonized agar appears white and uncolonized agar appears black on LB and B media, as indicated. Swarming cells colonize a larger surface area than nonswarming cells. All strains are derivatives of strain 3610 unless otherwise indicated. Bar, 2 cm. (A) Quantitative swarm expansion assays on solid medium and growth in liquid medium of the indicated strains on LB medium (closed symbols) and on B medium (open symbols). To indicate variability in a particular experiment, we have reproduced the quantitative swarm expansion assay of strain 3610 on LB and B media with error bars in Fig. S5 in the supplemental material. (B) Quantitative swarm expansion assays on LB (closed symbols) and B (open symbols) media. The following strains were used: DS3337 (sfp), DS2415 (swrA), DS5106 (168 swrA+), DS5758 (168 sfp+), and DS5759 (168 swrA+ sfp+). In all assays, B medium was made according to reference 2 except for strain DS5759, for which B medium was supplemented with 780 μM threonine to compensate for thrC auxotrophy. (C) Swarm plates of the indicated strains on LB medium made with equal parts peptone instead of tryptone. (D) Quantitative swarm expansion assays of the indicated 3610-derived mutant strains on LB medium (closed symbols) and on B medium (open symbols). The following strains were used: DS72 (yvzB), DS2268 (epr), DS3903 (phrC), DS4978 (rapC), DS4979 (oppD), DS2509 (swrB), and DS3649 (degU). All points are averages for three replicates.

TABLE 1.

Strains
StrainGenotypea
168trpC2 swrA sfp (13)
3610Wild type
DS72yvzB::tet (21)
DS2268epr::kan
DS2415ΔswrA
DS2509ΔswrB
DS3337sfp::mls
DS3649ΔdegU
DS3903phrC::spec
DS4978rapC::spec
DS4979oppD::kan
DS5106168 trpC2 swrA sfp amyE::PswrA-swrA cat
DS5758168 trpC2 swrA sfp amyE::sfp+ cat
DS5759168 trpC2 swrA sfp amyE::PswrA-swrA cat thrC::sfp+ mls
Open in a separate windowaAll strains are in the 3610 genetic background unless otherwise indicated.We next explored the genetic basis for the swarming defect we observed in strain 168 (Orsay). As with other laboratory strains, colonies of strain 168 (Orsay) failed to produce the transparent ring normally indicative of surfactin production, due to a mutation of the gene sfp (25). Complementation with the wild-type sfp gene in 168 was sufficient to restore surfactin production but was insufficient to restore swarming motility (Fig. (Fig.1B)1B) (20). Laboratory strains also fail to swarm because of a loss-of-function frameshift mutation in the gene encoding SwrA (5, 21). Sequencing of the swrA gene confirmed that strain 168 (Orsay) contained the frameshift mutation, but introduction of a swrA complementation construct at an ectopic site in the chromosome (amyE::PswrA-swrA) was also insufficient to restore swarming motility (Fig. (Fig.1B).1B). Swarming motility was fully rescued, however, when sfp and swrA were simultaneously complemented in the 168 strain (Fig. (Fig.1B)1B) or when the swrA frameshift mutation was repaired in spontaneous suppressors isolated from 168 complemented with sfp alone (see Fig. S1 in the supplemental material). Furthermore, mutation of either sfp or swrA in the 3610 genetic background abolished swarming (Fig. (Fig.1B).1B). We conclude that Sfp and SwrA are necessary for swarming. We further conclude that, with respect to swarming motility, strain 168 (Orsay) is genetically no different from any other laboratory strain we have tested, as it fails to swarm due to simultaneous defects in Sfp and SwrA (21). We infer that the apparent swarming observed in some laboratory strains is not due to genetic differences but rather due to differences in experimental conditions.In our swarming assays, we take steps to minimize surface water. In some cases of the reported swarming of strain 168, plates were poured 1 h before use, dried for 5 min, and incubated at 60 to 70% humidity (13). When 0.7% agar LB plates were freshly poured and not dried, we noticed that toothpick inoculation of the cells disturbed the agar surface and caused a pool of water to well forth from the agar (see Fig. S2 in the supplemental material). Pools of water emerged even when the plates were dried for 5 or 10 min prior to inoculation, but water did not emerge when the plates were dried for 15 min or longer (see Fig. S2 in the supplemental material). The colony size of strain 168 was proportional to the amount of water extracted from the agar, but the cells did not exhibit swarming motility (see Fig. S2 in the supplemental material). We conclude that excess water was not sufficient to promote swarming of the laboratory strain. Nonetheless, we recommend drying plates for 20 min prior to inoculation to minimize any contribution of swimming motility to apparent surface migration.Another difference in experimental conditions may concern the nutritional content of the medium. Some labs have tested swarming motility on LB medium in which tryptone was replaced by an equal amount of peptone (13). We reproduced the “LB” medium containing peptone and found that whereas strain 3610 was swarming proficient, strain 168 was swarming deficient (Fig. (Fig.1C).1C). Thus, the peptone substitution did not promote swarming in lab strains.Some labs have also reported swarming of laboratory strains on a defined medium called B medium [15 mM (NH4)2SO4, 8 mM MgSO4·7H2O, 27 mM KCl, 7 mM sodium citrate·H2O, 50 mM Tris·HCl (pH 7.5), 2 mM CaCl2·2H2O, 1 μM FeSO4·7H2O, 10 μM MnSO4·4H2O, 0.6 mM KH2PO4, 4.5 mM glutamic acid, 860 μM lysine, 780 μM tryptophan, and 0.5% glucose) (2, 13, 18, 19). In our hands, 3610 was swarming proficient on B medium, but strain 168 was swarming deficient (Fig. (Fig.1A).1A). We conclude that altering medium composition was insufficient to promote swarming of laboratory strains. Furthermore, mutation of either sfp or swrA rendered strain 3610 nonswarming on B medium, and complementation of sfp and swrA restored B medium swarming to strain 168 (Fig. (Fig.1B).1B). We conclude that the genetic requirements for swarming are the same for both LB and B medium.On undefined rich LB medium, strain 3610 swarmed rapidly as a featureless monolayer, whereas on defined B medium, it swarmed in a branched dendritic pattern (18, 20) (Fig. (Fig.1A).1A). In addition, the growth rate of 3610 in liquid B medium and swarm rate on solid B medium were both reduced fivefold relative to comparable assays with LB (Table (Table2),2), suggesting that the rate of swarming and the rate of growth were related. To further explore the connection between growth rate and swarming rate, we performed swarm expansion assays at lower temperatures. At 30°C, the growth rate in LB broth was reduced 2.5-fold relative to 37°C, and the swarming rate on LB agar was reduced 2.5-fold as well (Table (Table2;2; also, see Fig. S3 in the supplemental material). We conclude that swarming rate is correlated with growth rate. We infer that differences in growth may account for differences in swarm patterns (11). We note that regardless of the medium composition or the growth rate, the duration of the lag prior to swarming initiation was relatively constant.

TABLE 2.

Growth rates and swarm ratesa
MediumTemp (°C)Swarm rate (mm/h)Growth rate (generations/h)Reduction inb:
Swarm rateGrowth rate
LB37153.511
LB3061.42.52.5
B3730.855
Open in a separate windowaStrain 3610 was used to generate all data.bRelative to cells cultured in LB at 37°C (standard conditions).Ultimately we were unable to reproduce swarming in laboratory strains, and we reassert that laboratory strains are defective for swarming-motility. It is difficult to explain reports of swarming-proficient laboratory strains, because these cells are defective for both surfactin and swrA. Thus, the apparent swarming of strain 168 must be due to poorly reproducible environmental factors and/or selection for genetic revertants.  相似文献   
54.

Background

Linked to extreme rates of chronic heart and kidney disease, pyoderma is endemic amongst Aboriginal children in Australia''s Northern Territory (NT). Many of those with pyoderma will also have scabies. We report the results of a community-based collaboration within the East Arnhem Region, which aimed to reduce the prevalence of both skin infections in Aboriginal children.

Methodology/Principal Findings

Commencing September 2004, we conducted an ecological study that included active surveillance for skin infections amongst children aged <15 years in five remote East Arnhem communities over a three year period. Screening was undertaken by trained local community workers, usually accompanied by another project team member, using a standard data collection form. Skin infections were diagnosed clinically with the aid of a pictorial flip chart developed for the purpose. Topical 5% permethrin was provided for age-eligible children and all household contacts whenever scabies was diagnosed, whilst those with pyoderma were referred to the clinic for treatment in accordance with current guidelines. In addition, annual mass scabies treatment (5% permethrin cream) was offered to all community residents in accordance with current guidelines but was not directly observed. Pyoderma and scabies prevalence per month was determined from 6038 skin assessments conducted on 2329 children. Pyoderma prevalence dropped from 46.7% at baseline to a median of 32.4% (IQR 28.9%–41.0%) during the follow-up period – an absolute reduction of 14.7% (IQR 4.7%–16.8%). Compared to the first 18 months of observation, there was an absolute reduction in pyoderma prevalence of 18 cases per 100 children (95%CI −21.0, −16.1, p≤0.001) over the last 18 months. Treatment uptake increased over the same period (absolute difference 13.4%, 95%CI 3.3, 23.6). While scabies prevalence was unchanged, the prevalence of infected scabies (that is with superimposed pyoderma) decreased from 3.7% (95%CI 2.4, 4.9) to 1.5% (95%CI 0.7, 2.2), a relative reduction of 59%.

Conclusion

Although pyoderma prevalence remained unacceptably high, there was a substantial reduction overall with improvements in treatment uptake a critical factor. More acceptable alternatives, such as cotrimoxazole for pyoderma and ivermectin as a community-wide scabicide, warrant further investigation in these settings. We are encouraged by progress made through this work, where local action was led by local community members and primary health care providers with external training and support.

Trial Registration

ClinicalTrials.gov NCT00884728  相似文献   
55.
We describe an algorithm, multi-species cMonkey, for the simultaneous biclustering of heterogeneous multiple-species data collections and apply the algorithm to a group of bacteria containing Bacillus subtilis, Bacillus anthracis, and Listeria monocytogenes. The algorithm reveals evolutionary insights into the surprisingly high degree of conservation of regulatory modules across these three species and allows data and insights from well-studied organisms to complement the analysis of related but less well studied organisms.  相似文献   
56.
Microbial processes, including biofilm formation, motility, and virulence, are often regulated by changes in the available concentration of cyclic dimeric guanosine monophosphate (c-di-GMP). Generally, high c-di-GMP concentrations are correlated with decreased motility and increased biofilm formation and low c-di-GMP concentrations are correlated with an increase in motility and activation of virulence pathways. The study of c-di-GMP is complicated, however, by the fact that organisms often encode dozens of redundant enzymes that synthesize and hydrolyze c-di-GMP, diguanylate cyclases (DGCs), and c-di-GMP phosphodiesterases (PDEs); thus, determining the contribution of any one particular enzyme is challenging. In an effort to develop a facile system to study c-di-GMP metabolic enzymes, we have engineered a suite of Bacillus subtilis strains to assess the effect of individual heterologously expressed proteins on c-di-GMP levels. As a proof of principle, we characterized all 37 known genes encoding predicted DGCs and PDEs in Clostridium difficile using parallel readouts of swarming motility and fluorescence from green fluorescent protein (GFP) expressed under the control of a c-di-GMP-controlled riboswitch. We found that 27 of the 37 putative C. difficile 630 c-di-GMP metabolic enzymes had either active cyclase or phosphodiesterase activity, with agreement between our motility phenotypes and fluorescence-based c-di-GMP reporter. Finally, we show that there appears to be a threshold level of c-di-GMP needed to inhibit motility in Bacillus subtilis.  相似文献   
57.
Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.  相似文献   
58.
Cigarette smoking is a major independent risk factor for cardiovascular disease. While the association between chronic smoking and cardiovascular disease is well established, the underlying mechanisms are incompletely understood, partly due to the lack of adequate in vivo animal models. Here, we report a mouse model of chronic smoking-induced cardiovascular pathology. Male C57BL/6J mice were exposed to whole body mainstream cigarette smoke (CS) using a SCIREQ "InExpose" smoking system (48 min/day, 5 days/wk) for 16 or 32 wk. Age-matched, air-exposed mice served as nonsmoking controls. Blood pressure was measured, and cardiac MRI was performed. In vitro vascular ring and isolated heart experiments were performed to measure vascular reactivity and cardiac function. Blood from control and smoking mice was studied for the nitric oxide (NO) decay rate and reactive oxygen species (ROS) generation. With 32 wk of CS exposure, mice had significantly less body weight gain and markedly higher blood pressure. At 32 wk of CS exposure, ACh-induced vasorelaxation was significantly shifted to the right and downward, left ventricular mass was significantly larger along with an increased heart-to-body weight ratio, in vitro cardiac function tended to be impaired with high afterload, white blood cells had significantly higher ROS generation, and the blood NO decay rate was significantly faster. Thus, smoking led to blunted weight gain, hypertension, endothelial dysfunction, leukocyte activation with ROS generation, decreased NO bioavailability, and mild cardiac hypertrophy in mice that were not otherwise predisposed to disease. This mouse model is a useful tool to enable further elucidation of the molecular and cellular mechanisms of smoking-induced cardiovascular diseases.  相似文献   
59.
Cells respond to variable environments by changing gene expression and gene interactions. To study how human cells response to stress, we analyzed the expression of >5000 genes in cultured B cells from nearly 100 normal individuals following endoplasmic reticulum stress and exposure to ionizing radiation. We identified thousands of genes that are induced or repressed. Then, we constructed coexpression networks and inferred interactions among genes. We used coexpression and machine learning analyses to study how genes interact with each other in response to stress. The results showed that for most genes, their interactions with each other are the same at baseline and in response to different stresses; however, a small set of genes acquired new interacting partners to engage in stress-specific responses. These genes with altered interacting partners are associated with diseases in which endoplasmic reticulum stress response or sensitivity to radiation has been implicated. Thus, our findings showed that to understand disease-specific pathways, it is important to identify not only genes that change expression levels but also those that alter interactions with other genes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号