首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  32篇
  2021年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2005年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1974年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
32.
In this paper we describe a general procedure to determine the thermodynamic parameters associated with the interaction of polypeptides or proteins with immobilised lipophilic compounds such as non-polar n-octyl groups. To this end, the binding behaviour of an all L-alpha-polypeptide, 1, and its retro-inverso-isomer, 2, has been investigated with an n-octylsilica and water-organic solvent mixture containing different percentages of acetonitrile or methanol over the temperature range of 278-338 K. The results confirm that non-linear van'ts Hoff plots occur with this pair of polypeptide isomers, depending on the solvent composition. These findings are consistent with the changes in the thermodynamic parameters, enthalpy of association, delta Hoassoc,i, entropy of association, delta Soassoc,i, and heat capacity, delta Cop,i, all having significant temperature dependencies. Theoretical relationship linking the changes in the delta Hoassoc,i, delta Soassoc,i and delta Cop,i values of these polypeptide-non-polar ligate systems, as a function of temperature, T, have been validated. Significant differences were observed in the magnitudes of these thermodynamic quantities when acetonitrile or methanol was employed as the organic solvent. The origin of these solvent-dependent effects can be attributed to the hydrogen-bonding propensity of the respective solvent. Involvement of enthalpy-entropy compensation effects associated with the interaction of these polypeptides with the hydrophobic ligates has also been documented. Analysis of empirical extra-thermodynamic relationships associated with molecular structural properties of these polypeptides, such as the slope term, S, derived from the plots of the logarithmic capacity factor, log k'i, of these polypeptides vs. the volume fraction of the organic solvent, [symbol: see text] as a function of temperature, T, has also revealed similar correlations in terms of the interactive behaviour of polypeptides 1 and 2 under these experimental conditions. These findings provide an extended thermodynamic and extra-thermodynamic framework to examine the solvational, conformational and other equilibrium processes that polypeptides (or proteins) can undergo in the presence of n-alkylsilicas or other classes of immobilised hydrophobic surfaces. The experimental approach utilised in this study with these topologically similar polypeptides thus represents a generic procedure to explore the behaviour of polypeptides or proteins in non-polar environments in terms of their molecular properties and the associated linear free energy relationships that determine their interactive behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号