首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   69篇
  国内免费   110篇
  2024年   1篇
  2023年   20篇
  2022年   34篇
  2021年   81篇
  2020年   54篇
  2019年   65篇
  2018年   53篇
  2017年   35篇
  2016年   57篇
  2015年   91篇
  2014年   99篇
  2013年   102篇
  2012年   161篇
  2011年   131篇
  2010年   75篇
  2009年   70篇
  2008年   96篇
  2007年   75篇
  2006年   73篇
  2005年   54篇
  2004年   56篇
  2003年   39篇
  2002年   21篇
  2001年   38篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1774条查询结果,搜索用时 218 毫秒
151.
Natural and within-farmland biodiversity enhances crop productivity   总被引:1,自引:0,他引:1  
Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture.  相似文献   
152.
Zhang P  Zhu X  Huang F  Liu Y  Zhang J  Lu Y  Ruan Y 《PloS one》2011,6(7):e22378
The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.  相似文献   
153.
Recombination enhancer (RE) is essential for regulating donor preference during yeast mating type switching. In this study, by using minichromosome affinity purification (MAP) and mass spectrometry, we found that yeast Ku80p is associated with RE in MATa cells. Chromatin immunoprecipitation assays confirmed its occupancy in vivo. Deletion of YKU80 results in altered chromatin structure in the RE region and more importantly causes a dramatic decrease of HML usage in MATa cells. We also detect directional movement of yKu80p from the RE towards HML during switching. These results indicate a novel function of yeast Ku80p in regulating mating type switching.  相似文献   
154.
A loss of T cell tolerance underlies the development of most autoimmune diseases. The design of therapeutic strategies to reinstitute immune tolerance, however, is hampered by uncertainty regarding the molecular mechanisms involved in the inactivation of potentially autoreactive T cells. Recently, E3 ubiquitin ligases have been shown to mediate the development of a durable state of unresponsiveness in T cells called clonal anergy. In this review, we will discuss the mechanisms used by E3 ligases to control the activation of T cells and prevent the development of autoimmunity.  相似文献   
155.
To determine the contribution of charged amino acids to binding with the photosystem II complex (PSII), the amino or carboxyl groups of the extrinsic 18 kDa protein were modified with N- succinimidyl propionate (NSP) or glycine methyl ester (GME) in the presence of a water-soluble carbodiimide, respectively. Based on isoelectric point shift, 4-10 and 10-14 amino groups were modified in the presence of 2 and 4 mM NSP, respectively. Similarly, 3-4 carboxyl groups were modified by reaction with 100 mM GME. Neutralization of negatively charged carboxyl groups with GME did not alter the binding activity of the extrinsic 18 kDa protein. However, the NSP-modified 18 kDa protein, in which the positively charged amino groups had been modified to uncharged methyl esters, failed to bind with the PSII membrane in the presence of the extrinsic 23 kDa protein. This defect can not be attributed to structural or conformational alterations imposed by chemical modification, as the fluorescence and circular dichroism spectra among native, GME- and NSP-modified extrinsic 18 kDa proteins were similar. Thus, we have concluded that the positive charges of lysyl residues in the extrinsic 18 kDa protein are important for its interaction with PSII membranes in the presence of the extrinsic 23 kDa protein. Furthermore, it was found that the negative charges of carboxyl groups of this protein did not participate in binding with the extrinsic 23 kDa protein associated with PSII membranes.  相似文献   
156.
The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase   总被引:1,自引:0,他引:1  
Bacterial prolyl-tRNA synthetases and some smaller paralogs, YbaK and ProX, can hydrolyze misacylated Cys-tRNA Pro or Ala-tRNA Pro. To assess the significance of this quality control editing reaction in vivo, we tested Escherichia coli ybaK for its ability to suppress the E. coli thymidylate synthase thyA:146CCA missense mutant strain, which requires Cys-tRNA(Pro) for growth in the absence of thymine. Missense suppression was observed in a ybaK deletion background, suggesting that YbaK functions as a Cys-tRNA Pro deacylase in vivo. In vitro studies with the full set of 20 E. coli aminoacyl-tRNAs revealed that the Haemophilus influenzae and E. coli YbaK proteins are moderately general aminoacyl-tRNA deacylases that preferentially hydrolyze Cys-tRNA Pro and Cys-tRNA Cys and are also weak deacylases that cleave Gly-tRNA, Ala-tRNA, Ser-tRNA, Pro-tRNA, and Met-tRNA. The ProX protein acted as an aminoacyl-tRNA deacylase that cleaves preferentially Ala-tRNA and Gly-tRNA. The potential of H. influenzae YbaK to hydrolyze in vivo correctly charged Cys-tRNA Cys was tested in E. coli strain X2913 (ybaK+). Overexpression of H. influenzae ybaK decreased the in vivo ratio of Cys-tRNA Cys to tRNA Cys from 65 to 35% and reduced the growth rate of strain X2913 by 30% in LB medium. These data suggest that YbaK-mediated hydrolysis of aminoacyl-tRNA can influence cell growth.  相似文献   
157.
Cotton (Gossypium hirsutum L.) seed develops single-celled long fibres (lint) from the seed-coat epidermis at anthesis. Previous studies have shown that the initiation and rapid elongation of these fibres requires the expression of sucrose synthase (Sus) and, potentially, a transient closure of plasmodesmata. This study extends the previous work to examine the patterns of Sus expression and plasmodesmata gating in fuzz-like short fibres of a mutant that shows delayed initiation and much slower and reduced elongation of the fibre cells. Immunolocalization studies revealed delayed expression of Sus in the mutant seed-coat epidermis that correlates temporally and spatially with the initiation of the fibre cells. Anatomically, these short fibres differed from the normal lint in that their basal ends enlarged immediately after initiation, while the majority of the normal lint on wild-type seed did not show this enlargement until the end of elongation. Suppression of Sus expression in the seed-coat epidermis of the transgenic plants reduced the length of both lint and short fuzz fibres at maturity, suggesting that the growth of short fibres also requires high levels of Sus expression. Confocal imaging of the membrane-impermeant fluorescent solute carboxyfluorescein (CF) revealed no closure of plasmodesmata during the entire elongation period of short fibres from the mutant seed. These results show (i) the delayed initiation of fuzz-like short fibres from the mutant seed correlates with delayed or insufficient expression of Sus in a subset of seed-coat epidermal cells destined to become fibres and (ii) the much shortened elongation of the fibres from the mutant may be related to their inability to close plasmodesmata.  相似文献   
158.
To mimic the native conditions, the cyclooxygenase (COX)/prostaglandin I(2) synthase (PGIS) coupling reaction system was used to determine the coordination of PGIS with COX for the biosynthesis of prostacyclin (PGI(2)) using arachidonic acid (AA) as a substrate in a membrane-bound environment. The membrane-bound PGIS exhibited a faster isomerization of PGH(2) produced by COX to PGI(2) than the detergent-solubilized PGIS. To determine whether the N-terminal domain of PGIS responds to the facilitation of PGH(2) movement (presentation) from COX to the active site of PGIS, the first 20 residues of PGIS (Delta20-PGIS) were deleted and expressed in COS-7 cells. Delta20-PGIS retained membrane-bound properties and exhibited a slower substrate presentation property. Furthermore, a chimeric molecule (PGIS/TXAS(8-27)) with the replacement of the first 20 residues of PGIS by the corresponding membrane anchor region (residues 8-27) of thromboxane A(2) synthase was created to evaluate the mechanism influencing the biosynthesis of PGI(2) in coordination with COX. The chimera revealed a multiple fold delay in the PGH(2) presentation in low range concentrations of AA (0.3-3muM) at 30s reactions. However, the delay could be recovered by a longer incubation time in high range concentrations of AA (>10muM), but not in low range concentrations of AA. These results demonstrated that the N-terminal domain of PGIS plays a role in the facilitation of the substrate presentation to the PGIS active site in low concentrations of AA, which may be a physiological condition. The TXAS N-terminal domain could not replace the function of the corresponding domain of PGIS, indicating that the facilitation of the substrate presentation is specific.  相似文献   
159.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   
160.
Zhang L  Huang G  Wu J  Ruan KH 《Biochemistry》2005,44(34):11389-11401
The first intracellular loop (iLP1, residues 39-51) of human prostacyclin receptor (IP) was proposed to be involved in signaling via its interaction with the Galphas protein. First, evidence of the IP iLP1 interaction with the C-terminus of the Galphas protein was observed by the fluorescence and NMR spectroscopy using the synthetic peptide (Galphas-Ct) mimicking the C-terminal 11 residues of the Galphas protein in the presence of a constrained synthetic peptide mimicking the IP iLP1. Then, the residues (Arg42, Ala44, and Arg45) in the IP iLP1 peptide possibly involved in contacting the Galphas-Ct peptide were initially assigned by observation of the significant proton resonance shifts of the side chains of the constrained IP iLP1 peptide using 2D (1)H NMR spectroscopy. The results of the NMR studies were used as a guide for further identification of the residues in the IP important to the receptor signaling using a recombinant protein approach. A profile of the residues in the IP iLP1, including the residues observed from the NMR studies involved in the Galphas mediated signaling, was mapped out by mutagenesis. According to our results, it can be predicted that the seven residues (Arg42-Ala48) with the conserved Arg45 at the center will form an epitope with a specific conformation involved in the Galphas mediated signaling. The conservation of the basic residues (Arg45 in the IP) in all of the prostanoid receptors suggests that the iLP1 regions of the other prostanoid receptors may also contain the epitopes important to their signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号