首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4677篇
  免费   512篇
  国内免费   578篇
  5767篇
  2024年   55篇
  2023年   89篇
  2022年   215篇
  2021年   295篇
  2020年   242篇
  2019年   300篇
  2018年   222篇
  2017年   177篇
  2016年   202篇
  2015年   296篇
  2014年   347篇
  2013年   345篇
  2012年   461篇
  2011年   393篇
  2010年   239篇
  2009年   220篇
  2008年   222篇
  2007年   192篇
  2006年   157篇
  2005年   153篇
  2004年   129篇
  2003年   130篇
  2002年   107篇
  2001年   91篇
  2000年   71篇
  1999年   55篇
  1998年   34篇
  1997年   34篇
  1996年   30篇
  1995年   26篇
  1994年   23篇
  1993年   20篇
  1992年   25篇
  1991年   17篇
  1990年   18篇
  1989年   14篇
  1988年   11篇
  1987年   7篇
  1985年   5篇
  1983年   12篇
  1982年   5篇
  1980年   4篇
  1979年   4篇
  1977年   4篇
  1973年   6篇
  1972年   11篇
  1971年   7篇
  1970年   7篇
  1968年   7篇
  1967年   4篇
排序方式: 共有5767条查询结果,搜索用时 15 毫秒
21.
Hu  Pengjie  Liu  Linxia  Ke  Weixin  Tian  Xiuyun  Wang  Linqi 《中国科学:生命科学英文版》2021,64(8):1336-1345
Science China Life Sciences - Cell cycle is a fundamental process underlying growth and development in evolutionarily diverse organisms, including fungi. In human fungal pathogens, cell cycle...  相似文献   
22.
Papillary thyroid cancer (PTC) usually has favorable prognosis;however,distant metastasis is a leading cause of death associated with PTC.MicroRNA-99a-3p (miR-9...  相似文献   
23.
Improving biological functions of endothelial progenitor cells (EPCs) is beneficial to maintaining endothelium homeostasis and promoting vascular re-endothelialization. Because macroautophagy/autophagy has been documented as a double-edged sword in cell functions, its effects on EPCs remain to be elucidated. This study was designed to explore the role and molecular mechanisms of store-operated calcium entry (SOCE)-activated autophagy in proliferation of EPCs under hypercholesterolemia. We employed oxidized low-density lipoprotein (ox-LDL) to mimic hypercholesterolemia in bone marrow-derived EPCs from rat. Ox-LDL dose-dependently activated autophagy flux, while inhibiting EPC proliferation. Importantly, inhibition of autophagy either by silencing Atg7 or by 3-methyladenine treatment, further aggravated proliferative inhibition by ox-LDL, suggesting the protective effects of autophagy against ox-LDL. Interestingly, ox-LDL increased STIM1 expression and intracellular Ca2+ concentration. Either Ca2+ chelators or deficiency in STIM1 attenuated ox-LDL-induced autophagy activation, confirming the involvement of SOCE in the process. Furthermore, CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) activation and MTOR (mechanistic target of rapamycin [serine/threonine kinase]) deactivation were associated with autophagy modulation. Together, our results reveal a novel signaling pathway of SOCE-CAMKK2 in the regulation of autophagy and offer new insights into the important roles of autophagy in maintaining proliferation and promoting the survival capability of EPCs. This may be beneficial to improving EPC transplantation efficacy and enhancing vascular re-endothelialization in patients with hypercholesterolemia.  相似文献   
24.
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides.  相似文献   
25.
Within the past several years, a number of powerful genetic and genomic tools have been developed for use in research on the African malaria vector Anopheles gambiae. While these tools have been developed with a broad range of potential applications in mind, they have been particularly useful in advancing the effort to clone a set of An. gambiae genes that enable a refractory strain of this mosquito to encapsulate and kill a wide variety of different malaria parasites to which this mosquito is normally fully susceptible. This paper describes the latest progress in this map-based cloning research, which involves the collaborative contributions of a number of different laboratories in Europe and the United States.  相似文献   
26.
27.
Neurochemical Research - Manganese (Mn) overexposure is a public health concern due to its widespread industrial usage and the risk for environmental contamination. The clinical symptoms of Mn...  相似文献   
28.
Biomacromolecular pigments, such as melanin, play an essential role in the survival of all living beings. Melanin absorbs sunlight and transforms it into heat, which is crucial for avoiding damage to skin cells. Light absorption produces excited electrons, which could either fall back to ground states by releasing the heat (photothermal effect) and/or light (photoluminescence), or stay at higher energy levels within its lifetime period, which can be captured through external electronic circuitry (photovoltaic effect). In this study, it is demonstrated that the combination of melanin with halide perovskite light absorber in the form of a composite exhibits high absorbance from the UV to NIR region in the solar spectrum. And the composite displays significantly reduced photoluminescence and minimized density of residual excited states (verified by photovoltaic measurement) owing to the significantly enhanced nonradiant quenching by the melanin. As a result, the composite shows an ultrahigh solar‐thermal quantum yield of 99.56% and solar‐thermal conversion efficiency of ≈81% under one‐sun illumination (AM1.5), which is superior to typical carbon materials such as graphene (≈70%). By coating the photothermal composite film on the hot‐side of thermoelectric devices, a 7000% increase in output power as compared to the blank device under illumination is observed.  相似文献   
29.
Expression of modified xynA gene fragments in Escherichia coli BL21 was studied, using the complete xynA gene from Bacillus subtilis BE-91 as the positive control. The technical workflow consisted of the following steps: (1) predicting protein structures relative to the xynA gene; (2) designing primers for modifiers; (3) amplifying the modifiers; (4) integrating the modifiers with the pET-28a(+) vector; (5) transferring the recombinant plasmids into E. coli BL21; (6) evaluating and analyzing the expression of modified cells. The results were: (1) the xynA gene from BE-91 with the untranslated region deleted on both ends was able to promote XynA activity by 28.9 %; (2) deletion of the 1- to 16-amino acid (AA) coding sequence in the open reading frame on the 5′-end, deletion of the 209- to 213-AA fragment on the 3′-end and deletion of the 20 AA on both ends could promote XynA activity by 27.2, 27.7 and 24.0 %,respectively; (3) deletion of the 1- to 29-AA fragment on the 5′-end and deletion of the 197- to 213-AA fragment on the 3′-end could reduce XynA activity dramatically by 95.6 and 74.8 %, respectively; (4) inactivation factors of XynA would be either the first β-fold and the hydrophilic structure domain or the last two α-screws and the seventeenth turn region. The results mean that any deletion in the catalytic domain would lead to a decline or inactivation in XynA activity while the deletion of any sequence outside the catalytic domain could effectively promote XynA activity, as such sequences are unnecessary for XynA function.  相似文献   
30.
A caspase-3-activated DNase produces internucleosomal DNA cleavage (DNA laddering). We determined whether caspase-3 is activated by lithium-pilocarpine-induced status epilepticus in six brain regions with necrosis-induced DNA laddering. The thymuses of adult rats given methamphetamine or normal saline were used as controls for apoptosis. Some 6-8 h after methamphetamine treatment, thymocytes showed apoptosis by electron-microscopic examination, positive terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), DNA laddering, cleavage of caspase-3 into its active p17 subunit, active caspase-3 immunoreactivity, and a 25-fold increase in caspase-3-like activity. Six hours after SE, necrotic neurons by electron-microscopic examination in hippocampus, amygdala and piriform, entorhinal and frontal cortices showed no TUNEL and no DNA laddering. Twenty-four hours after seizures, most necrotic neurons were negative for TUNEL, some were positive, but all regions showed DNA laddering. However, 6 and 24 h after seizures, active caspase-3 immunoreactivity was negative, caspase-3-like activity did not increase, and western blot analysis failed to show the p17 subunit. In addition, 24 h after seizures,microdialytic perfusion of carbobenzoxy-valyl-alanyl-aspartyl (O-methylester) fluoromethylketone was not neuroprotective. Thus, caspase-3 is not activated in brain regions with seizure-induced neuronal necrosis with DNA laddering. Either caspase-activated DNase is activated by another enzyme, or a caspase-independent DNase is responsible for the DNA cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号